Hypergeometric Belyi Maps

David P. Roberts
University of Minnesota, Morris

June 24, 2020
Dessins d'enfants seminar, Moscow

Overview

Classical hypergeometric functions with rational parameters

$$
{ }_{n} F_{n-1}\left(\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{n-1}, t\right)
$$

have monodromy matrices $g_{\infty}, g_{1}, g_{0} \in G L_{n}\left(\mathbb{Q}^{\text {cyclo }}\right)$ satisfying

$$
g_{\infty} g_{1} g_{0}=1
$$

Beukers and Heckman (1989) classified the exceptional case when the image $G=\left\langle g_{\infty}, g_{0}\right\rangle$ is finite.

One can also take images in $G L_{n}\left(\overline{\mathbb{F}}_{\ell}\right)$ where they are always finite. Then one gets an infinite hierarchy of combinatorially indexed, tightly interrelated, arithmetically important Belyi maps. Today is an introduction to this hierarchy. I will show several examples of hypergeometric Belyi maps. Our main example has image $S p_{8}\left(\mathbb{F}_{2}\right)$ and goes beyond the Beukers-Heckman list.

Combinatorial indexing

The classical theory sets $\beta_{n}=1$. This is a bad convention! It is better to work with a general β_{n}. The arithmetically most important case is $\alpha_{j}, \beta_{j} \in \mathbb{Q}$. Monodromy depends only on $\alpha_{j}, \beta_{j} \in \mathbb{Q} / \mathbb{Z}$. Define

$$
q_{\infty}(x)=\prod_{j=1}^{n}\left(x-e^{2 \pi i \alpha_{j}}\right) . \quad q_{0}(x)=\prod_{j=1}^{n}\left(x-e^{-2 \pi i \beta_{j}}\right)
$$

We simplify by requiring $q_{\infty}(x), q_{0}(x) \in \mathbb{Z}[x]$ and coprime. Integrality allows cyclotomic indexing where e.g. $\left\{\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\right\}$ is written as [5].
Main example. Take $(\alpha, \beta)=$
$\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{9}, \frac{2}{9}, \frac{4}{9}, \frac{5}{9}, \frac{7}{9}, \frac{8}{9} ; \frac{1}{15}, \frac{2}{15}, \frac{4}{15}, \frac{7}{15}, \frac{8}{15}, \frac{11}{15}, \frac{13}{15}, \frac{14}{15}\right)=([3,9],[15])$.
Then

$$
q_{\infty}(x)=\Phi_{3}(x) \Phi_{9}(x), \quad q_{0}(x)=\Phi_{15}(x)
$$

Monodromy matrices (Levelt 1961)

Let A and B be the standard companion matrices of $q_{\infty}(x)$ and $q_{0}(x)$. Then

$$
\left(g_{\infty}, g_{1}, g_{0}\right):=\left(A, A^{-1} B, B^{-1}\right)
$$

Main example of ([3, 9], [15]) again. The polynomials are $q_{\infty}(x)=x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1, \quad q_{0}(x)=x^{8}-x^{7}+x^{5}-x^{4}+x^{3}-x+1$.

The matrix product $g_{\infty} g_{1} g_{0}$ is

$$
\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1
\end{array}\right)\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrrrrrr}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Here g_{∞}, g_{1}, and g_{0} (obviously!) have orders $9, \infty$, and 15.

Examples with monodromy S_{c} from $a+b=c$

An easy and famous collection of examples comes from

$$
q_{\infty}(x)=\frac{x^{c}-1}{x-1}, \quad q_{0}(x)=\frac{\left(x^{a}-1\right)\left(x^{b}-1\right)}{x-1} .
$$

Here $c=n+1=a+b$ with a and b coprime. The monodromy is S_{c} and an equation for a Belyi map $\mathbb{P}_{x}^{1} \rightarrow \mathbb{P}_{t}^{1}$ is

$$
c^{c} x^{a}(1-x)^{b}-\operatorname{ta}^{a} b^{b}=0 .
$$

When $b=1$ the equation is trinomial. Always, the equation can be rewritten as $y^{c}+u y^{a}+v=0$ with u and v monomials in t.

The Grothendieck-Beckmann theorem allows bad reduction at all $p \leq c$. But bad reduction is only at $p \mid a b c$. This good feature is shared by all hypergeometric Belyi maps.

Varieties and their Hodge vectors

The local system with monodromy $\left(g_{\infty}, g_{1}, g_{0}\right)$ comes from a family of varieties X_{t} degenerating only at $\infty, 1$ and 0 [BCM]. The Hodge numbers $h^{p, q}$ of the main piece in the middle cohomology can be computed by how the α and β intertwine.
Procedure illustrated by the main example of ([3, 9], [15]):

Here the Hodge vector is $h=\left(h^{1,0}, h^{0,1}\right)=(4,4)$, which matches the fact that the X_{t} are genus four curves. The extreme possibilities are

No intertwining: $h=(1, \ldots, 1)$ (of Calabi-Yau interest),
Complete intertwining: $h=(n)$
(Finite monodromy $[\mathrm{BH}]$).

The Beukers-Heckman list

Beukers and Heckman classified the 76 exceptional cases with finite monodromy, allowing the coefficients of $q_{\infty}(x)$ and $q_{0}(x)$ to generate an arbitrary number field $E \subset \mathbb{Q}^{\text {cyclo }}$. The six last groups on the Shephard-Todd list of complex reflection groups from 1954 account for two-thirds of the Beukers-Heckman list:

E	Name		G	$B H$	N
$\mathbb{Q}(\sqrt{-3})$	Maschke	$S T 32$	$=3 \times S P_{4}\left(\mathbb{F}_{3}\right)$	$24-36$	27
$\mathbb{Q}(\sqrt{-3})$	Burkhardt	$S T 33$	$=S O_{5}\left(\mathbb{F}_{3}\right)$	$41-44$	27
$\mathbb{Q}(\sqrt{-3})$	Mitchell	$S T 34$	$=3 . S O_{6}^{-}\left(\mathbb{F}_{3}\right)$	$50-57$	112
\mathbb{Q}	"27 lines"	$S T 35$	$=W\left(E_{6}\right)=S O_{6}^{-}\left(\mathbb{F}_{2}\right)$	$45-49$	27
\mathbb{Q}	"28 bitangents"	$S T 36$	$=W\left(E_{7}\right)=2 \times S P_{6}\left(\mathbb{F}_{2}\right)$	$58-62$	28
\mathbb{Q}	"120 tritangents"	$S T 37$	$=W\left(E_{8}\right)=2 . S O_{8}^{+}\left(\mathbb{F}_{2}\right)$	$63-77$	120

N is the minimal degree of the Belyi map corresponding to the projective representation. To get the linear representation one may need a larger degree.

Equations for Beukers-Heckman covers

In the " 27 lines" and " 28 bitangents" cases, covering curves always have genus zero. Some of the equations $t A(x)+B(x)=0$ correspond to 1990s papers, others are also easy from a modern viewpoint:

In other cases, covering curves almost always have higher genus $[R]$. first obtained equations for them by specializing generic polynomials for complex reflection groups. This process is sometimes easy, sometimes hard, and I am still missing two Mitchell cases.

Mod ℓ representations

A hypergeometric datum (α, β) and a prime ℓ determine a Belyi map capturing $\left(g_{\infty}, g_{1}, g_{0}\right) \in G L_{n}\left(\mathbb{F}_{\ell}\right)^{3}$. For small degrees n and primes $\ell \in\{2,3\}$, the Belyi maps are often on the Beukers-Heckman list.
Example. Consider three hypergeometric data (using cyclotomic abbreviation as in [8] $=\left\{\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}\right\}$ again):

α 's	β 's	Hodge vector	Nature of varieties X_{t}
$[8]$	$[1,1,1,1]$	$(1,1,1,1)$	Threefold
$[8]$	$[3,1,1]$	$(2,2)$	$y^{2}=x^{5}+4 t x^{2}+3 t x$
$[8]$	$[3,3]$	$(2,2)$	Threefold

The indices agree up to 3 -torsion so the three (g_{∞}, g_{1}, g_{0}) are exactly the same in $G L_{4}\left(\mathbb{F}_{3}\right)^{3}$. In fact this mod 3 representation comes from BH28 with $(\alpha, \beta)=\left(\frac{1}{24}, \frac{7}{24}, \frac{13}{24}, \frac{19}{24} ; 0, \frac{1}{9}, \frac{4}{9}, \frac{7}{9}\right)$. In fact, all 13 Maschke cases BH24-BH36 likewise come from $y^{2}=x^{5}+a x^{3}+b x^{2}+c x+d$.

The main example: A hypergeometric Belyi map with monodromy group $S_{p}\left(\mathbb{F}_{2}\right)$

Step 1. Start from ([3, 9], [15]) and $\ell=2$.
Step 2. Writing $s=\frac{5^{10}}{2^{4} 3^{6}} t$, the genus four curves X_{t} are given by

$$
F(x, y)=\begin{gathered}
1 \\
-3 s x^{2} y
\end{gathered} \begin{gathered}
-3 s x y^{2}
\end{gathered} \begin{gathered}
+s y^{3} \\
-s^{2} x^{2} y^{3}
\end{gathered}=0 .
$$

For $t \neq 0,1, \infty$ they are smooth curves of bidegree $(3,3)$ in the ambient space $\mathbb{P}_{x}^{1} \times \mathbb{P}_{y}^{1}$.
Step 3. A generic curve $G(x, y)=x y+a x+b y+c=0$ of bidegree $(1,1)$ meets X_{t} in six distinct points, with x-values the roots of $\operatorname{Resultant}_{y}(F(x, y), G(x, y))=0$. Require that this sextic have the form $-s(\text { cubic })^{2}$ to get three explicit equations on a, b, c.

Main example of $([3,9],[15])$ with $\ell=2$, continued

Step 4. Remove c by a resultant (easy). Remove b by a resultant (harder; one minute on Magma). Clean up by writing $a=\frac{2^{2} 3^{3}}{5^{5}} x$. The final polynomial has 213 terms:

$$
\beta(t, x)=s^{56} x^{120}+2^{9} s^{55} x^{117}+\cdots+2^{16} 3^{12} 5^{10} .
$$

It has ramification triple $\left(\lambda_{\infty}, \lambda_{1}, \lambda_{0}\right)=\left(9^{13} 3,2^{28} 1^{64}, 15^{8}\right)$. Its singular specialization is $\beta(1, x)=f_{28}(x)^{2} f_{64}(x)$ with $f_{28}(x)=$

$$
\begin{aligned}
& 729 x^{28}+14580 x^{27}-729000 x^{25}-364500 x^{24}+18808200 x^{23}-10813500 x^{22} \\
& -246523500 x^{21}+332606250 x^{20}+2032020000 x^{19}-4588582500 x^{18}-8854312500 x^{17} \\
& +32255043750 x^{16}+13751437500 x^{15}-123395906250 x^{14}+1415250000 x^{13} \\
& +395654765625 x^{12}-230352187500 x^{11}-807579687500 x^{10}+1036859375000 x^{9} \\
& +283591406250 x^{8}-326203125000 x^{7}-1762746093750 x^{6}+529453125000 x^{5} \\
& +6155009765625 x^{4}-9439570312500 x^{3}+3423339843750 x^{2}+2734375000000 x \\
& -1938232421875 .
\end{aligned}
$$

$\operatorname{Gal}\left(f_{28}(x)\right)=S p_{6}\left(\mathbb{F}_{2}\right)$ and fielddisc $\left(f_{28}(x)\right)=2^{42} 3^{52} 5^{30}$.

Belyi maps as a tool for studying wild ramification

Wild ramification at p in varieties over \mathbb{Q} is always faithfully represented in $\bmod \ell$ representations for any $\ell \neq p$. For hypergeometric varieties, wild ramification is mysterious. Explicit equations for $\bmod \ell$ representations are a useful tool. $\operatorname{Graphs}^{\sin } \operatorname{ord}_{p}\left(\right.$ fielddisc $\left.\left(\beta\left(-p^{k}, x\right)\right)\right)$ for $k \in[-30,30]$ and $p=2,3,5$:

It would be hard to get this information about ramification in hypergeometric varieties in other ways. It is useful for example for determining conductors of L-functions.

Selected references

[BH] Frits Beukers and Gert Heckman. Monodromy for the hypergeometric function ${ }_{n} F_{n-1}$. Invent. Math. 95 (1989), no. 2, 325-354.
[BCM] Frits Beukers, Henri Cohen, Anton Mellit. Finite hypergeometric functions, Pure Appl. Math. Q. 11:4 (2015), 559-589.
$[R]$ David P. Roberts. Shioda polynomials for $W\left(E_{n}\right)$ Beukers-Heckman covers (slides) davidproberts.net
[ST] G. C. Shephard and J. A. Todd (1954), Finite unitary reflection groups, Can. J. Math., 6 (1954), 274-304.

