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Classical hypergeometric functions with rational parameters

nanl(Oéla <o, Oy, 617 R 7ﬁn717 t)

have monodromy matrices g, g1, g0 € GL,(Q™°°) satisfying

80818 = 1.

Beukers and Heckman (1989) classified the exceptional case when
the image G = (g, o) is finite.

One can also take images in GL,(IF,) where they are always finite.
Then one gets an infinite hierarchy of combinatorially indexed, tightly
interrelated, arithmetically important Belyi maps. Today is an
introduction to this hierarchy. | will show several examples of
hypergeometric Belyi maps. Our main example has image Spg([F,)
and goes beyond the Beukers-Heckman list.



Combinatorial indexing

The classical theory sets 3, = 1. This is a bad convention! It is better
to work with a general 3,. The arithmetically most important case is
aj, B; € Q. Monodromy depends only on «;, §; € Q/Z. Define

n n

Joo(X) = H (x — ™). go(x) = H (x — e 21).

j=1 j=1
We simplify by requiring g-(x), go(x) € Z[x] and coprime. Integrality
allows cyclotomic indexing where e.g. {1, 2,2 2} is written as [5].

Main example. Take (a, 5) =
<12124578_ 1 2 4 7 8 11 13 14

———————— = 15]).
3’3’0’9’9'9’9’9" 157157157157 157 15" 15’ 15) (13,91, {15)
Then

qoo(X) = ¢3(X)¢9(X)7 qo(X) = ¢15(X)'



Monodromy matrices (Levelt 1961)

Let A and B be the standard companion matrices of g..(x) and
go(x). Then

(goovglagO) = (A’ A_187 B_l)'
Main example of ([3,9],[15]) again. The polynomials are

Goo(¥) = X2+ X"+ x84+ x5 x4+ X3+ 2+ x4+1, qo(x) =xB—x" + x5 —x* +x3 —x+ 1.

The matrix product g..g180 is

-1 1 2 11
1 -1 1 1 0 1
1 -1 1 0 -1 1
1 -1 1 2 1 1
1 -1 1 0 -1 1
1 -1 1 1 0 1
1 -1 12 1 1
1 -1 1 -1

Here g.., g1, and gy (obviously!) have orders 9, oo, and 15.



Examples with monodromy S, from a+ b= ¢

An easy and famous collection of examples comes from

_xc—l

oo (x) = o (x* —1)(x —1)'

x—1

qo(x) =

Here ¢ = n+ 1 = a+ b with a and b coprime. The monodromy is S,
and an equation for a Belyi map P! — Pl is

c“x?(1 — x)P — ta®b® = 0.
When b = 1 the equation is trinomial. Always, the equation can be

rewritten as y© + uy? + v = 0 with u and v monomials in t.

The Grothendieck-Beckmann theorem allows bad reduction at all
p < c. But bad reduction is only at p|abc. This good feature is
shared by all hypergeometric Belyi maps.



Varieties and their Hodge vectors

The local system with monodromy (g, g1, 80) comes from a family
of varieties X; degenerating only at oo, 1 and 0 [BCM]. The Hodge
numbers h”9 of the main piece in the middle cohomology can be
computed by how the o and (3 intertwine.

Procedure illustrated by the main example of ([3,9],[15]):
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Here the Hodge vector is h = (h1?, h®1) = (4, 4), which matches the
fact that the X; are genus four curves. The extreme possibilities are

No intertwining: h=(1,...,1) (of Calabi-Yau interest),
Complete intertwining: h = (n) (Finite monodromy [BH]).



The Beukers-Heckman list

Beukers and Heckman classified the 76 exceptional cases with finite
monodromy, allowing the coefficients of g.,(x) and go(x) to generate
an arbitrary number field E C Q¥°°. The six last groups on the
Shephard-Todd list of complex reflection groups from 1954 account
for two-thirds of the Beukers-Heckman list:

E Name G BH N
Q(v-3) Maschke ST32 = 3 x Sps(F3) 24-36 27
Q(W-3) Burkhardt ST33 = SOs(F3) 41-44 27
Q(v-3) Mitchell ST34 = 3.50; (Fs) 50-57 112

Q “27 lines” ST35 = W(E)=S0; (F,) 4549 27

Q “28 bitangents” ST36 = W(E)=2x Spe(F.) 58-62 28

Q “120 tritangents” ST37 = W(E)=2.504(F,) 63-77 120

N is the minimal degree of the Belyi map corresponding to the
projective representation. To get the linear representation one may
need a larger degree.



Equations for Beukers-Heckman covers

and "28 bitangents” cases, covering curves always
Some of the equations tA(x) + B(x) = 0 correspond
others are also easy from a modern viewpoint:

In the "27 lines”
have genus zero.
to 1990s papers,

BH «a's B's A(x) B(x)
45 [3,12] [1,2,8] [243 (x2 —3)7 —39(x —2)(x — 1)8 (x® —2x —1)°
46 [3,12] [1,2,5] |5%(x —1)3 (22 +2x —1)* —2103%5(2x — 1)2 (x2 + x — 1)°
47 9] [1,2,4,6]| (x3+6x% —8)° —24312(x — 2)x6(x + 1)4(x + 4)*
48 9] [1,2,8] |28 (x3+9x2 +6x+1)° —315x(2x 4 1)8 (x2 — 2x — 15)8
49 [9] [1,2,5] [2255 (x3 —3x2 4 1)° —3B(x—1)25 (x2 —x—1)
58 [2,18] [1,3,12] [—218 (x3 +3x2 —3)° 363(3x 4 4) (x> + 6x 4 6) "
50 [2,18] [1,3,5] [55(x — 1) (x3+9x2 + 15x —1)° 2143123 (x2 4 7x 4 1)°
60 [2,18] [1,7] |77 (8x® +36x2 +12x 4 1)° 21431557 (x3 — 20x2 — 9x — 1)

61 [2,14] [1,3,12]
62 [2,14] [1,3,5]

21839 (X3 —Tx+ 7)7

335%(x + 1)7 (x® — x2 — 9x + 1)7

77(x —1)(x +3)% (x2 —3)**
2147753 (X2 +3x + 1)5

In other cases, covering curves almost always have higher genus [R]. |
first obtained equations for them by specializing generic polynomials
for complex reflection groups. This process is sometimes easy,
sometimes hard, and | am still missing two Mitchell cases.



Mod ¢ representations

A hypergeometric datum («, /) and a prime ¢ determine a Belyi map
capturing (guo, 81,80) € GLA(F,)*. For small degrees n and primes
¢ € {2,3}, the Belyi maps are often on the Beukers-Heckman list.

Example. Consider three hypergeometric data (using cyclotomic
abbreviation as in [8] = {%, 3,2, I} again):

a's B's Hodge vector Nature of varieties X;
8] [1,1,1,1] (1,1,1,1) Threefold
8] [3,1,1] (2,2) y? = x>+ 4tx® + 3tx
[8] 3, 3] (2,2) Threefold

The indices agree up to 3-torsion so the three (g.., g1, 80) are exactly
the same in GL4(F3)3. In fact this mod 3 representation comes from
BH28 with (o, 8) = (2. 2+ 55+ 207 0. 5, 5, 2). In fact, all 13 Maschke

24724724724 Y197979
cases BH24-BH36 likewise come from y? = x> + ax® + bx?> + cx + d.



The main example: A hypergeometric Belyi map

with monodromy group Spg(IF>)

Step 1. Start from ([3,9], [15]) and ¢ = 2.
Step 2. Writing s = %t, the genus four curves X; are given by

1 +sy3
—3sxy?
F(x,y) = —3sx2y —s2x2y3 =0
—sx3

For t # 0, 1, oo they are smooth curves of bidegree (3,3) in the
ambient space P, x P},

Step 3. A generic curve G(x,y) = xy + ax + by + ¢ = 0 of bidegree
(1,1) meets X; in six distinct points, with x-values the roots of

Resultant, (F(x,y), G(x,y)) = 0. Require that this sextic have the
form —s(cubic)” to get three explicit equations on a, b, c.



Main example of ([3,9],[15]) with ¢ = 2, continued

Step 4. Remove c by a resultant (easy). Remove b by a resultant

(harder; one minute on Magma). Clean up by writing a = 2\3}—?3

The final polynomial has 213 terms:
B(t, x) = sFx120 4 29555117 | ... 4 16312510,

It has ramification triple (As, A1, Ag) = (9133,2281%% 158). Its
singular specialization is 3(1, x) = fg(x)?fa(x) with frg(x) =
729x%8 4+ 14580x%7 — 729000x%° — 364500x%* + 18808200x>% — 10813500x22
— 246523500x% + 332606250x2° + 2032020000x1° — 4588582500x*8 — 8854312500x1"
+ 32255043750x1° + 13751437500x1° — 123395906250x* + 14152500003
+ 395654765625x2 — 230352187500x*! — 807579687500x'° + 1036859375000x°
+ 283591406250x° — 326203125000’ — 1762746093750x° + 529453125000x°

+ 6155000765625x* — 9439570312500x° 4 3423339843750x2 + 2734375000000x
— 1938232421875.

Gal(fg(x)) = Sps(F2) and fielddisc(fg(x)) = 242352530,



Belyi maps as a tool for studying wild ramification

Wild ramification at p in varieties over Q is always faithfully
represented in mod /¢ representations for any ¢ # p. For
hypergeometric varieties, wild ramification is mysterious. Explicit
equations for mod ¢ representations are a useful tool.

Graphs of ord,(fielddisc(5(—p*, x))) for k € [-30,30] and p = 2,3,5:
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It would be hard to get this information about ramification in
hypergeometric varieties in other ways. It is useful for example for
determining conductors of L-functions.
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