#### Hypergeometric Belyi Maps

#### David P. Roberts University of Minnesota, Morris

#### June 24, 2020 Dessins d'enfants seminar, Moscow

#### Overview

Classical hypergeometric functions with rational parameters

$$_{n}F_{n-1}(\alpha_{1},\ldots,\alpha_{n};\beta_{1},\ldots,\beta_{n-1},t)$$

have monodromy matrices  $g_\infty$ ,  $g_1$ ,  $g_0 \in GL_n(\mathbb{Q}^{\operatorname{cyclo}})$  satisfying

 $g_{\infty}g_1g_0=1.$ 

Beukers and Heckman (1989) classified the exceptional case when the image  $G = \langle g_{\infty}, g_0 \rangle$  is finite.

One can also take images in  $GL_n(\mathbb{F}_{\ell})$  where they are always finite. Then one gets an *infinite hierarchy* of *combinatorially indexed*, *tightly interrelated*, *arithmetically important* Belyi maps. Today is an introduction to this hierarchy. I will show several examples of hypergeometric Belyi maps. Our main example has image  $Sp_8(\mathbb{F}_2)$ and goes beyond the Beukers-Heckman list.

### Combinatorial indexing

The classical theory sets  $\beta_n = 1$ . This is a bad convention! It is better to work with a general  $\beta_n$ . The arithmetically most important case is  $\alpha_j$ ,  $\beta_j \in \mathbb{Q}$ . Monodromy depends only on  $\alpha_j, \beta_j \in \mathbb{Q}/\mathbb{Z}$ . Define

$$q_\infty(x) = \prod_{j=1}^n \left(x-e^{2\pi i lpha_j}
ight). \qquad q_0(x) = \prod_{j=1}^n \left(x-e^{-2\pi i eta_j}
ight).$$

We simplify by requiring  $q_{\infty}(x), q_0(x) \in \mathbb{Z}[x]$  and coprime. Integrality allows *cyclotomic indexing* where e.g.  $\{\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\}$  is written as [5]. **Main example.** Take  $(\alpha, \beta) =$ 

$$\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{9}, \frac{2}{9}, \frac{4}{9}, \frac{5}{9}, \frac{7}{9}, \frac{8}{9}; \frac{1}{15}, \frac{2}{15}, \frac{4}{15}, \frac{7}{15}, \frac{8}{15}, \frac{11}{15}, \frac{13}{15}, \frac{14}{15}\right) = ([3, 9], [15]).$$

Then

$$q_{\infty}(x) = \Phi_3(x)\Phi_9(x), \qquad \qquad q_0(x) = \Phi_{15}(x).$$

### Monodromy matrices (Levelt 1961)

Let A and B be the standard companion matrices of  $q_{\infty}(x)$  and  $q_0(x)$ . Then

$$(g_{\infty}, g_1, g_0) := (A, A^{-1}B, B^{-1}).$$

Main example of ([3,9], [15]) again. The polynomials are

 $q_{\infty}(x) = x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1, \quad q_{0}(x) = x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1.$ 

#### The matrix product $g_{\infty}g_1g_0$ is

 $\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ 

Here  $g_{\infty}$ ,  $g_1$ , and  $g_0$  (obviously!) have orders 9,  $\infty$ , and 15.

#### Examples with monodromy $S_c$ from a + b = c

An easy and famous collection of examples comes from

$$q_{\infty}(x) = rac{x^c - 1}{x - 1}, \qquad q_0(x) = rac{(x^a - 1)(x^b - 1)}{x - 1}.$$

Here c = n + 1 = a + b with a and b coprime. The monodromy is  $S_c$  and an equation for a Belyi map  $\mathbb{P}^1_x \to \mathbb{P}^1_t$  is

$$c^{c}x^{a}(1-x)^{b}-ta^{a}b^{b}=0.$$

When b = 1 the equation is trinomial. Always, the equation can be rewritten as  $y^c + uy^a + v = 0$  with u and v monomials in t.

The Grothendieck-Beckmann theorem allows bad reduction at all  $p \le c$ . But bad reduction is only at p|abc. This good feature is shared by all hypergeometric Belyi maps.

#### Varieties and their Hodge vectors

The local system with monodromy  $(g_{\infty}, g_1, g_0)$  comes from a family of varieties  $X_t$  degenerating only at  $\infty$ , 1 and 0 [BCM]. The Hodge numbers  $h^{p,q}$  of the main piece in the middle cohomology can be computed by how the  $\alpha$  and  $\beta$  intertwine.

Procedure illustrated by the main example of ([3, 9], [15]):



Here the Hodge vector is  $h = (h^{1,0}, h^{0,1}) = (4, 4)$ , which matches the fact that the  $X_t$  are genus four curves. The extreme possibilities are

No intertwining: h = (1, ..., 1) (of Calabi-Yau interest), Complete intertwining: h = (n) (Finite monodromy [BH]).

### The Beukers-Heckman list

Beukers and Heckman classified the 76 exceptional cases with finite monodromy, allowing the coefficients of  $q_{\infty}(x)$  and  $q_0(x)$  to generate an arbitrary number field  $E \subset \mathbb{Q}^{\text{cyclo}}$ . The six last groups on the Shephard-Todd list of complex reflection groups from 1954 account for two-thirds of the Beukers-Heckman list:

| Ε                       | Name              |              | G |                                        | BH    | Ν   |
|-------------------------|-------------------|--------------|---|----------------------------------------|-------|-----|
| $\mathbb{Q}(\sqrt{-3})$ | Maschke           | <i>ST</i> 32 | = | $3 	imes Sp_4(\mathbb{F}_3)$           | 24-36 | 27  |
| $\mathbb{Q}(\sqrt{-3})$ | Burkhardt         | <i>ST</i> 33 | = | $SO_5(\mathbb{F}_3)$                   | 41-44 | 27  |
| $\mathbb{Q}(\sqrt{-3})$ | Mitchell          | <i>ST</i> 34 | = | $3.SO_6^-(\mathbb{F}_3)$               | 50-57 | 112 |
| Q                       | "27 lines"        | <i>ST</i> 35 | = | $W(E_6) = SO_6^-(\mathbb{F}_2)$        | 45-49 | 27  |
| $\mathbb{Q}$            | "28 bitangents"   | <i>ST</i> 36 | = | $W(E_7) = 2 \times Sp_6(\mathbb{F}_2)$ | 58-62 | 28  |
| Q                       | "120 tritangents" | <i>ST</i> 37 | = | $W(E_8) = 2.SO_8^+(\mathbb{F}_2)$      | 63-77 | 120 |

N is the minimal degree of the Belyi map corresponding to the projective representation. To get the linear representation one may need a larger degree.

#### Equations for Beukers-Heckman covers

In the "27 lines" and "28 bitangents" cases, covering curves always have genus zero. Some of the equations tA(x) + B(x) = 0 correspond to 1990s papers, others are also easy from a modern viewpoint:

| BH | lpha's  | eta's                  | A(x)                                        | B(x)                                       |
|----|---------|------------------------|---------------------------------------------|--------------------------------------------|
| 45 | [3, 12] | [1, 2, 8]              | $2^4 x^3 (x^2 - 3)^{12}$                    | $-3^{9}(x-2)(x-1)^{8}(x^{2}-2x-1)^{8}$     |
| 46 | [3, 12] | [1, 2, 5]              | $5^{5}(x-1)^{3}(2x^{2}+2x-1)^{12}$          | $-2^{10}3^9x^5(2x-1)^2(x^2+x-1)^5$         |
| 47 | [9]     | $\left[1,2,4,6\right]$ | $(x^3 + 6x^2 - 8)^9$                        | $-2^{4}3^{12}(x-2)x^{6}(x+1)^{4}(x+4)^{4}$ |
| 48 | [9]     | [1, 2, 8]              | $2^{18} (x^3 + 9x^2 + 6x + 1)^9$            | $-3^{15}x(2x+1)^8(x^2-2x-1)^8$             |
| 49 | [9]     | [1, 2, 5]              | $2^{2}5^{5}(x^{3}-3x^{2}+1)^{9}$            | $-3^{15}(x-1)^2 x^5 (x^2-x-1)^5$           |
| 58 | [2, 18] | [1, 3, 12]             | $-2^{18} (x^3 + 3x^2 - 3)^9$                | $3^{6}x^{3}(3x+4)(x^{2}+6x+6)^{12}$        |
| 59 | [2, 18] | [1, 3, 5]              | $5^{5}(x-1)(x^{3}+9x^{2}+15x-1)^{9}$        | $2^{14}3^{12}x^3(x^2+7x+1)^5$              |
| 60 | [2, 18] | [1, 7]                 | $7^7 (8x^3 + 36x^2 + 12x + 1)^9$            | $2^{14}3^{15}x^7 (x^3 - 20x^2 - 9x - 1)^7$ |
| 61 | [2, 14] | [1, 3, 12]             | $2^{18}3^9 (x^3 - 7x + 7)^7$                | $7^{7}(x-1)(x+3)^{3}(x^{2}-3)^{12}$        |
| 62 | [2, 14] | [1, 3, 5]              | $3^{3}5^{5}(x+1)^{7}(x^{3}-x^{2}-9x+1)^{7}$ | $2^{14}7^7x^3(x^2+3x+1)^5$                 |

In other cases, covering curves almost always have higher genus [R]. I first obtained equations for them by specializing generic polynomials for complex reflection groups. This process is sometimes easy, sometimes hard, and I am still missing two Mitchell cases.

#### Mod $\ell$ representations

A hypergeometric datum  $(\alpha, \beta)$  and a prime  $\ell$  determine a Belyi map capturing  $(g_{\infty}, g_1, g_0) \in GL_n(\mathbb{F}_{\ell})^3$ . For small degrees *n* and primes  $\ell \in \{2, 3\}$ , the Belyi maps are often on the Beukers-Heckman list.

**Example.** Consider three hypergeometric data (using cyclotomic abbreviation as in  $[8] = \{\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}\}$  again):

| $\alpha \mathbf{'s}$ | eta's        | Hodge vector | Nature of varieties $X_t$ |
|----------------------|--------------|--------------|---------------------------|
| [8]                  | [1, 1, 1, 1] | (1, 1, 1, 1) | Threefold                 |
| [8]                  | [3, 1, 1]    | (2,2)        | $y^2 = x^5 + 4tx^2 + 3tx$ |
| [8]                  | [3, 3]       | (2,2)        | Threefold                 |

The indices agree up to 3-torsion so the three  $(g_{\infty}, g_1, g_0)$  are exactly the same in  $GL_4(\mathbb{F}_3)^3$ . In fact this mod 3 representation comes from BH28 with  $(\alpha, \beta) = (\frac{1}{24}, \frac{7}{24}, \frac{13}{24}, \frac{19}{24}; 0, \frac{1}{9}, \frac{4}{9}, \frac{7}{9})$ . In fact, all 13 Maschke cases BH24-BH36 likewise come from  $y^2 = x^5 + ax^3 + bx^2 + cx + d$ .

# The main example: A hypergeometric Belyi map with monodromy group $Sp_8(\mathbb{F}_2)$

**Step 1.** Start from ([3,9], [15]) and  $\ell = 2$ . **Step 2.** Writing  $s = \frac{5^{10}}{2^4 3^6} t$ , the genus four curves  $X_t$  are given by

$$F(x,y) = \begin{cases} 1 & +sy^{3} \\ -3sxy^{2} & -3sxy^{2} \\ -sx^{3} & -s^{2}x^{2}y^{3} \end{cases} = 0.$$

For  $t \neq 0, 1, \infty$  they are smooth curves of bidegree (3,3) in the ambient space  $\mathbb{P}^1_x \times \mathbb{P}^1_y$ .

**Step 3.** A generic curve G(x, y) = xy + ax + by + c = 0 of bidegree (1,1) meets  $X_t$  in six distinct points, with x-values the roots of Resultant<sub>y</sub>(F(x, y), G(x, y)) = 0. Require that this sextic have the form  $-s(\text{cubic})^2$  to get three explicit equations on a, b, c.

# Main example of ([3,9],[15]) with $\ell = 2$ , continued

**Step 4.** Remove *c* by a resultant (easy). Remove *b* by a resultant (harder; one minute on *Magma*). Clean up by writing  $a = \frac{2^2 3^3}{5^5} x$ . The final polynomial has 213 terms:

$$\beta(t,x) = s^{56}x^{120} + 2^9s^{55}x^{117} + \dots + 2^{16}3^{12}5^{10}.$$

It has ramification triple  $(\lambda_{\infty}, \lambda_1, \lambda_0) = (9^{13}3, 2^{28}1^{64}, 15^8)$ . Its singular specialization is  $\beta(1, x) = f_{28}(x)^2 f_{64}(x)$  with  $f_{28}(x) =$ 

 $\begin{array}{l} 729x^{28} + 14580x^{27} - 729000x^{25} - 364500x^{24} + 18808200x^{23} - 10813500x^{22} \\ - 246523500x^{21} + 332606250x^{20} + 2032020000x^{19} - 4588582500x^{18} - 8854312500x^{17} \\ + 32255043750x^{16} + 13751437500x^{15} - 123395906250x^{14} + 1415250000x^{13} \\ + 395654765625x^{12} - 230352187500x^{11} - 807579687500x^{10} + 1036859375000x^{9} \\ + 283591406250x^{8} - 326203125000x^{7} - 1762746093750x^{6} + 529453125000x^{5} \\ + 6155009765625x^{4} - 9439570312500x^{3} + 3423339843750x^{2} + 2734375000000x \\ - 1938232421875. \end{array}$ 

 $\operatorname{Gal}(f_{28}(x)) = Sp_6(\mathbb{F}_2)$  and fielddisc $(f_{28}(x)) = 2^{42}3^{52}5^{30}$ .

## Belyi maps as a tool for studying wild ramification

Wild ramification at p in varieties over  $\mathbb{Q}$  is always faithfully represented in mod  $\ell$  representations for any  $\ell \neq p$ . For hypergeometric varieties, wild ramification is mysterious. Explicit equations for mod  $\ell$  representations are a useful tool.

Graphs of  $\operatorname{ord}_p(\operatorname{fielddisc}(\beta(-p^k, x)))$  for  $k \in [-30, 30]$  and p = 2,3,5:



It would be hard to get this information about ramification in hypergeometric varieties in other ways. It is useful for example for determining conductors of L-functions.

#### Selected references

[BH] Frits Beukers and Gert Heckman. Monodromy for the hypergeometric function  $_{n}F_{n-1}$ . Invent. Math. 95 (1989), no. 2, 325–354.

[BCM] Frits Beukers, Henri Cohen, Anton Mellit. *Finite hypergeometric functions*, Pure Appl. Math. Q. 11:4 (2015), 559–589.

[R] David P. Roberts. Shioda polynomials for  $W(E_n)$ Beukers-Heckman covers (slides) davidproberts.net

[ST] G. C. Shephard and J. A. Todd (1954), *Finite unitary reflection groups*, Can. J. Math., 6 (1954), 274–304.