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Hodge vectors

For a genus g curve X , the Hodge numbers of H1(X ,Q) are
(h1,0, h0,1) = (g , g).

For a K3 surface X , there is a decomposition

H2(X ,Q) = H2
trans(X ,Q)⊕ H2

alg(X ,Q).

On Hodge vectors (h2,0, h1,1, h0,2) the decomposition is

(1, 20, 1) = (1, a, 1) + (0, 20− a, 0)

for some a in {0, . . . , 19}.

In general a weight w Hodge vector is a vector h = (hw ,0, . . . , h0,w ) of
non-negative integers satisfying the Hodge symmetry hp,q = hq,p and
the normalization condition hw ,0 ≥ 1. Its rank is n =

∑w
p=0 h

p,w−p.



Seeking motives for a given h = (hw ,0, . . . , h0,w)

Restrict to w ≥ 1 as w = 0 behaves differently. Mentally focus on
unusual Hodge vectors like (3, 1, 0, 0, 0, 0, 0, 0, 1, 3).

Precise theoretical Q1. Does there exist a full motive M having
Hodge vector h?

[“Full” means “with motivic Galois group as large as possible” and can
be viewed as a nondegeneracy condition. We’ll answer yes for many h
just by exhibiting full motives. I conjecture that the answer is no for
many h.]

Vague computational Q2. For a motive M as found for Q1, can
we numerically verify that its L-function L(M , s) has the expected
analytic properties? Can we numerically find an automorphic
representation π with L(π, s) = L(M , s)?



Tables in rank two and odd weight w

For h = (1,
w−1︷ ︸︸ ︷

0, 0, . . . , 0, 0, 1), the motives sought are, under standard
expectations, in canonical bijection with newforms of modular weight
k = w + 1 with rational coefficients and without CM.

The LMFDB provides excellent tables. E.g., for h = (1, 0, 0, 1) fill the
input boxes with

Conductor = Level = 1..100 Modular weight k = 4

Self-Twists = no CM Coefficient Field = 1.1.1.1

The list of 168 forms is complete, conductors being N = 5, 6, 7, . . .

In particular the answer to Question 1 is yes for w = 1, 3, 5, . . . , 49.
I’ve conjectured that it’s no for w = 51, 53, . . . . The reason is that
all newspaces have dimension ≥ 2, and exceptions to a general
Maeda principle that newforms in a given newspace are conjugate
have only been seen for w ≤ 25.



Hypergeometric Motives
Let A = [A1, . . . ,Ar ] and B = [B1, . . . ,Bs ] be multisets of positive
integers with Ai 6= Bj always and n =

∑
i φ(Ai) =

∑
j φ(Bj). The

pair (A,B) determines a family of varieties Xt degenerating only at
t ∈ {0, 1,∞}. For example, take (A,B) = ([3, 4], [5]). Then Xt is
the genus two curve determined by 2633t(xy 2 + 1) = 55x2(1 + xy).

The rank n hypergeometric motive H(A,B ; t) sits in the cohomology
of Xt . Its Hodge vector is determined by how the roots of
ΦA1(T ) · · ·ΦAr (T ) and ΦB1(T ) · · ·ΦBr (T ) intertwine in the unit
circle. Complete intertwining gives h = (n) and complete separation
gives (1, 1, . . . , 1, 1). In general, these h from HGMs never have 0’s.

So for many Hodge vectors without 0’s, e.g. all of them in ranks
≤ 21, one gets a positive answer to Question 1. Fullness is easily
proved via monodromy. Exotic Hodge vectors like (9, 1, 1, 1, 1, 1, 1, 9)
can arise from thousands of families, each with infinitely many
specialization points!



Hypergeometric L-Series
For t ∈ Q− {0, 1}, Magma computes all the good factors of
L(H(A,B ; t), s), and makes often-correct guesses at the bad primes:

H := HypergeometricData([3,4],[5]);
L := LSeries(H,25/24:Precision:=7);
Conductor(L);

1 822 500 000 = 253657

LCfRequired(L);
222 111 terms needed at this precision

CFENew(L);
0.000000 (7 minutes) All looks correct!

[Evaluate(L,1), Evaluate(L,1:Derivative:=1)]
[0.000000, 7.840885] (6 minutes) Critical vanishing

To better respond to Question 2, we need to keep conductors very
small for the given h! An easy way is to involve just one small prime
in (A,B). A quite different way with interesting special features is
the focus of the second half of the talk!



Parameters for semiHGMs
Trivially H(A,B ; t) is isomorphic to H(B ,A; 1/t). We can’t take
A = B because of our non-degeneracy condition. But we can require

A = Aodd ∪ 2Bodd

B = 2Aodd ∪ Bodd
as in

A = [1, 1, 3, 10]
B = [2, 2, 6, 5].

For (A,B) of this very special form, there is a decomposition

H(A,B ; (−1)n) =: H(Aodd,Bodd) = H−(Aodd,Bodd)⊕H+(Aodd,Bodd).

Ranks of the semiHGMs are
n− n+

Orthogonal case n = 2r + 1 : r r + 1
Balanced symplectic case n = 4g + 2 : 2g 2g

Unbalanced symplectic case n = 4g + 4 : 2g 2g + 2

For H([1, 1, 3], [5]), the ranks are n− = 2 and n+ = 4. Despite the
sin of involving three primes, the conductor N− = 5 is first on the
(1, 0, 0, 1) list and N+ = 150 is fairly early on the (1, 1, 1, 1) list.



Hodge vectors of semiHGMs
Computation with examples strongly suggests that Hodge vectors of
semiHGMs are universally determined by a “maximal fairness”
property: The numbers hp,q+ − hp,q− are in {−1, 0, 1} with nonzero
differences alternating in sign for p ≥ q.

For H([1107], [ ]) with (n−, n+) = (6, 8) the prediction is
h = (4, 1, 1, 1, 0, 0, 1, 1, 1, 4)

h− = (2, 0, 1, 0, 0, 0, 0, 1, 0, 2)
h+ = (2, 1, 0, 1, 0, 0, 1, 0, 1, 2)

It can be proved in instances arithmetically using the close relation
between Hodge numbers and p-adic ordinals of roots of Frobenius
polynomials fp(x) = f −p (x)f +p (x). In our example,
f−5 (x) = (1 + 527x6) − 2601(x + 518x5) + 5032463(x2 + 59x4) − 258824158 · 52x3

f +5 (x) = (1 + 536x8) + 659(x + 527x7) + 1602654(x2 + 518x6) + 742226797(5x3 + 510x5) + 3751560002 · 54x4

The partition of the 5-adic ordinals given by the two irreducible
factors proves maximal fairness.



Fullness and Question 1
Computation with examples strongly suggests that semiHGMs are
almost always full. Continuing with the example H([1107], [ ]),

f−3 (x) = (1 + 327x6) − 55(x + 318x5) − 1535(x2 + 39x4) + 132914 · 33x3

f +3 (x) = (1 + 336x8) − 25(x + 327x7) + 560(x2 + 318x6) + 173701(3x3 + 310x5) − 3819794 · 34x4

Letting W (Cr ) = 2rSr be the group of r -by-r signed permutation
matrices,

Gal(f −3 (x)f −5 (x)) = W (C3)×W (C3),

Gal(f +3 (x)f +5 (x)) = W (C4)×W (C4).

The fact that these Galois groups are as large as possible suffices to
prove fullness of H−([1107], [ ]) and H+([1107], [ ]).

Unlike HGMs at t 6= 1 from the first half of the talk, semiHGMs can
answer Question 1 with yes for h which contain 0’s. This is a
qualitative improvement: motives with such Hodge vectors cannot
move in families and so only can be found one-by-one.



Bad reduction of semiHGMs

Reduction at bad primes is very structured. Sample expectations:

For p = 2, write na =
∑

Ai∈Aodd
φ(Ai) and nb =

∑
Bi∈Bodd

φ(Bi) so
that n = na + nb. Then 2-adic ramification generally increases with
|na − nb|. Two extremes:

Condition ord2(N−) ord2(N+) f −2 (x) f +2 (x)
na = nb 0 1 g2(x) (lin)g2(x)

0 ∈ {na, nb}, n odd n − 1 n + 2 1 1

Here (lin) is a specified linear factor and g2(x) is a specified Tate
twist of the Frobenius polynomial for H(Aodd,Bodd; 1).

For odd primes p, most and typically all of fp(x) is likewise
obtained by “erasing” Ai and Bj whenever they are multiples of p.
Ramification is tame at p if and only if p2 does not divide any of the
Ai and Bj .



An orthogonal example of rank 4 + 5

There are 35 cases with (n, n−, n+) = (9, 4, 5). The only one ramified
at 2 only is H([19], [ ]). It actually has only the fifth smallest
conductor, because the ramification at 2 is relatively bad.
Information on the decomposition H−([19], [ ])⊕ H+([19], [ ]):

h N form

(1, 0, 1, 0, 1, 0, 1) 28 Mf ⊗Mgwith
{

f ∈ S3(32, χ−4)
g ∈ S5(32, χ−4)

(1, 0, 1, 0, 1, 0, 1, 0, 1) 211 [challenge!]

Here the newforms are

f = q − 4iq3 + 2q5 + 8iq7 + · · ·
g = q − 4iq3 + 26q5 − 88iq7 + · · ·

In the tensor product, the irrationality i =
√
−1 goes away.



A symplectic example of rank 4+6
There are 97 cases with (n, n−, n+) = (12, 4, 6). All but four of them
give two full motives.

One of the four exceptions isH([110], [3])with Frobenius polynomials

f5(x) = (1− 54 · 53x + 511x2)(1 + 666 · 5x + 511x2)(sextic)

f7(x) = (1 + 88 · 73x + 711x2)(1 + 904 · 7x + 711x2)(sextic)

The evidence is overwhelming that H−([110], [3]) decomposes:

h N form Placement
(1, 0, 0, 0, 0, 1) 22 q

∏∞
k=1(1− q2)12 second

(1, 0, 0, 0, 0, 0, 0, 0, 0, 1) 22 q + 228q3 − 666q5 · · · fourth
(1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1) 273 [challenge!] [challenge!]

Knowing L(H−([110], [3]), s) lets one compute L(H+([110], [3]), s) in
isolation. E.g. L(H+([110], [3]), 6) ≈ 1.1770515607675810065242197
is calculated in half a minute.



Some references

The survey paper Hypergeometric Motives with Fernando Rodriguez
Villegas will appear in the Notices of the AMS this summer. It points
to many relevant points in the hypergeometric literature.

Newforms with rational coefficients in the Ramanujan Journal states
and supports the conjecture about the nonexistence of such forms in
high weights.

The L-function and HGM parts of Magma are absolutely essential to
the computational exploration of HGMs and semiHGMs. They are
due to Tim Dokchitser and Mark Watkins respectively.

A paper corresponding to this talk is in preparation. The above two
papers and these slides are at www.davidproberts.net.


