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Overview

The Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

1

1− p−s

is a remarkable number-theoretic object. Its completion

Λ(s) = π−s/2Γ
( s

2

)
ζ(s)

is entire except for poles at 0 and 1, has a functional equation
Λ(s) = Λ(1− s), and its zeros conjecturally are all on Re(s) = 1/2.

The Riemann zeta is the first element of a countable set L of standard
automorphic L-functions. It is a member of a subset L0 of L-functions
which look like they come from algebraic geometry. Millions of L-functions
L ∈ L, most in L0, are cataloged on the LMFDB. In this talk we explain
how Plancherel measures are useful for approximating cardinalities
of parts of L and understanding how L0 sits inside L.



Sections of today’s talk

1. General setting: Automorphic representations → L ⊃ L0 ← motives

2. Dot diagrams for infinity factors of L-functions

3. Tour of the LMFDB, guided by infinity factors

4. Plancherel densities governing distribution of infinity factors

5. Two classes of infinity factors not in the LMFDB.



1. General setting

Let n be a positive integer. An L-function of degree n for this talk is a
Dirichlet series with Euler product coming from a “balanced ∞-tempered
cuspidal automorphic representation π of the adelic group GLn(A)”. An

L-function has the form

L(s, π) =
∞∑
k=1

ak
ks

=
∏
p

1

fp(p−s)

with fp(x) = 1− apx + · · · a polynomial in C[x ] of degree ≤ n.
An L-function comes with a conductor

N ≥ 1.

An L-function also comes with a decomposition of its degree, n = r1 + 2r2,
and two unordered lists of complex numbers called spectral parameters:

µ1, . . . , µr1 , and ν1, . . . , νr2 .

The balanced condition is that Im(
∑
µk + 2

∑
νk) = 0. The ∞-tempered

condition is that always Re(µk) ∈ {0, 1} and Re(νk) ∈ {1/2, 1, 3/2, 2, . . . }.



Completed L-functions: AC and FE

Let ΓR(s) = π−s/2Γ(s/2) and let ΓC(s) = 2(2π)−sΓ(s). Then the infinity
factor is

L∞(s) =

r1∏
k=1

ΓR(s + µk)

r2∏
k=1

ΓC(s + νk).

The completed L-function is

Λ(s, π) = Ns/2L∞(s)L(s, π).

Outside the Riemann zeta function case, where there are poles at s = 0
and s = 1 only, Λ(s, π) has an analytic continuation to the whole s plane.

The complex conjugate representation π gives the complex conjugate
L-function L(s, π) =

∑
k ann

−s with auxiliary data N, µk , and νk . One
has the functional equation Λ(1− s, π) = εΛ(s, π) for some number ε on
the unit circle. The self-dual case π = π is particularly important and
breaks into the symplectic and orthogonal subcases.



Definition of L and L0

Definition

L is the set of all L-functions.

L0 is the subset of L-functions with totally real infinity factors, i.e.
those for which the spectral parameters µk and νk are all real.

Some L-functions in L0 come from geometry and are called motivic.
Motivic L-functions have many further remarkable properties, beginning
with an ∈ Q.

The other L-functions are less tangible and (for the moment at least!)
viewed as less important. They are called transcendental.

It is conjectured that motivic L-functions are exactly the ones in L0. All
this leads to . . .

A Huge Community Project

Explicitly describe L, paying special attention to L0.



2. Dot diagrams for infinity factors

To give a degree n infinity factor in the usual way is the same as to give n
dots in 1

2Z× iR ⊂ C with real sum, stable under reflection in the imaginary
axis, together with a sign attached to each purely imaginary dot, via

ΓR(s + it)↔ [it+], ΓR(s + 1 + it)↔ [it−], ΓC(s + ν)↔ [ν] + [−ν̄].

For example, the infinity factor

ΓR(s−0.6i)ΓR(s+0.3i)ΓR(s+1+0.7i)ΓC(s+1−0.8i)ΓC(s+
5

2
−0.3i)ΓC(s+

5

2
+0.9i)

has dot diagram

-2 -1 1 2

-1

1

+

+
-

A dot diagram is self-dual iff it is also symmetric with w.r.t. the real axis.



Spaces of infinity factors

Let X be the space of infinity factors. Connected components of this
space are indexed by multiplicity vectors of real parts:

h =

(
. . . , h−3/2, h−1, h−1/2,

h0+

h0−
, h1/2 , h1 , h3/2 , . . .

)
.

We write H for the set of such h and define subsets H+ and H− via

h ∈ H+ if hj is even for all half-integers j .
h ∈ H− if hj is even for all integers j and also j ∈ {0+, 0−}.

Let X+ and X− be the subspaces of X consisting of infinity factors which
can arise from orthogonal and symplectic L-functions respectively. Then
the decompositions into connected components take the form

X =
∐
h∈H

X (h), X τ =
∐
h∈Hτ

X sd(h).

When h ∈ Hτ we also write X sd(h) as X τ (h).

The above notation is imported from algebraic geometry, where Hodge
numbers hp,q are now written h(p−q)/2 and there is a natural
decomposition h0 = h0+ + h0− coming from a complex conjugation.



Dimensions and real points

The dimension of a connected component is

dimX (h) = −1 + h0+ + h0− +
∑
j>0

hj , dimX sd(h) = b h
0+

2 c+ b h
0−

2 c+
∑
j>0

b h
j

2 c.

These formulas are clear from the dot diagrams. For example, in the
self-dual case the number given is the number of dots x + iy with x ≥ 0
and y > 0 in the case where all dots are different.

Note that every component of either X or X sd contains exactly one totally
real point. We say that h has pure parity if all the j with hj > 0 have the
same parity, meaning integral or half-integral. In the pure-parity case, this
real point is the only one can that can arise from algebraic geometry. In
the complementary mixed parity case, no points can arise from algebraic
geometry and so one expects that the real point does not actually come
from an L-function at all. Note that dim X τ (h) = 0 exactly when hj ≤ 1
always, and this implies that h has pure parity.



3. Guided (by infinity factors) tour of the LMFDB

Some dot diagrams of infinity factors:

n In LMFDB Not in LMFDB

1 + −

2 • •
ε

ε

+

−

3

+
+

+

• + •
• •

ε

−
−

+

4

+
+

+
+

• • • •
• •

• •

ε
• •

ε

Examples for the two blue cases will be given in Section 5.



4. Plancherel densities and the equidistribution principle

Let |j + it|0 be the usual absolute value on C, restricted to 1
2Z + iR. For

purely imaginary numbers use also the variants

|it|+= t tanh
(π

2
t
)
, |it|−= t coth

(π
2
t
)
,

Picture of the standard absolute value |it|0 and its variants |it|+ and |it|−:

-2 -1 1 2
t

1

2

For |t| even slightly large, all three | · |τ are approximately the same.



Fix a type τ ∈ {0,+,−} with 0 = non-self-dual, + = orthogonal, and
− = symplectic. Then for typed points αa, βb, define

ε(τ, αa, βb) =

{
τ(−1)1+2Re(α) if α = β̄ and Re(α) 6= 0,
a b else

in {0,+,−}.

Main Principle

For a fixed h and conductor N, infinity factors of L-functions of type h are
distributed in X τ (h) proportionally to Plancherel density:

∆0(α) :=
∏
j<k

|αj − αk |ε(0,αj ,αk )

∆+(α) :=
∏
j<k

|αj − αk |
(1−δαj ,−αk )/2
ε(+,αj ,αk )

∆−(α) :=
∏
j<k

|αj − αk |
(1+δαj ,−αk )/2

ε(−,αj ,αk )

So Plancherel densities can be thought of as modified discriminants. As
one runs over all h’s belonging to a fixed degree n, there is also some
uniformity in the proportionality factor.



Intuitive reformulation

For fixed h, one can think of points sliding up and down on vertical lines.
Always left-right symmetry is imposed. In the orthogonal and symplectic
cases, an up-down symmetry is imposed too. The formulas say roughly
that the further away the points are from each other, the more likely a
configuration is to arise from an L-function.

One can think in terms of almost every pair of points {αi , αj} repelling
each other in the same fashion, with force inversely proportional to
|αi − αj |. This force corresponds to the factor |αi − αj | in the
non-self-dual case and to the factor |αi − αj |1/2 in the self-dual cases. For
pairs of points on the same vertical line one sometimes needs a
modification which is particularly important for close-range interactions:

Points of

{
opposite
the same

sign repel each other

{
less
more

.

Conjugate points on

{
expected
unexpected

lines repel each other

{
less
more

.

In the

{
orthogonal
symplectic

case the force is

{
set to zero
doubled

for opposite points.



5. Two classes of infinity factors not in the LMFDB

For rank three L-functions with L∞(s) = ΓR(δj ,Z − 2it + s)ΓC(j + it + s)
with t ≥ 0 the density function is 2j(j2 + 9t2) is contour-plotted:
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For each j = 1/2, 1, 3/2, . . . the smallest t arising from an L-function
with N = 1 is indicated by a dot. The dot at j + it = 11 is the symmetric
square of the Ramanujan L-function; all others are transcendental.



For rank four symplectic L-functions with

L∞(s) = ΓC(j + it + s)ΓC(j − it + s),

the density function 16(j2 + t2)j(t coth(πt/2)) is contour-plotted in the
j-t plane:
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For each j = 1/2, 3/2, 5/2, 7/2, 9/2, the smallest t arising from an
L-function with N = 1 is indicated by a dot.


