Towards improving the Database of Local Fields

David P. Roberts
University of Minnesota, Morris

November 12, 2021

Two-paragraph summary

The p-adic field section of the LMFDB tabulates degree n extensions of \mathbb{Q}_{p}, including for all $n \leq 15$ and $p \leq 199$. For example, always up to isomorphism, there are 795 nonic extensions K / \mathbb{Q}_{3} and 1823 octic extensions K / \mathbb{Q}_{2}. Interesting invariants include visible slopes, hidden slopes, and Galois groups.

The main framework for improvement is to focus first on visible slopes. Here there is a strong general theory valid for general K / F, not just the case $F=\mathbb{Q}_{p}$. It centers on Krasner-Monge near-canonical polynomials for totally ramified extensions K / F. These polynomials let one collect all extensions of a given F with given visible slopes into a single parameterized family, and the dependence on F is mild. The family structure then facilitates the investigation of hidden slopes and Galois groups.

Overview

1. Introduction, including a tour of the database.
2. The ramification invariant I of an extension K / F, as captured in the totally wild degree p^{w} case by

$$
\begin{array}{ll}
\text { heights } & \left\langle h_{1}, \ldots, h_{w}\right\rangle, \\
\text { slopes } & {\left[s_{1}, \ldots, s_{w}\right],} \\
\text { or rams } & \left(r_{1}, \ldots, r_{w}\right) .
\end{array}
$$

3. The set \mathcal{I} of possible ramification invariants.
4. From ramification invariants to pictures.
5. From pictures to near-canonical polynomials.
6. Hidden slopes and Galois groups in two sample families.

1.1. Notation for classifyng extensions

Let $n \in \mathbb{Z}_{\geq 1}$ and let F be a field. An important problem is to describe the set $F(n)$ of isomorphism classes of separable field extensions K / F of degree n.

Let G run over conjugacy classes of transitive subgroups of S_{n}. Then Galois theory gives a natural decomposition

$$
F(n)=\coprod_{G} F(G) .
$$

One would like to describe each $F(G)$ individually.
Now let F be a p-adic field, i.e. a finite extension of \mathbb{Q}_{p} or $\mathbb{F}_{p}((t))$, with uniformizer $\pi \in \Pi \subset \mathcal{O} \subset F$ as usual. Then every K / F has a discriminant ideal Π^{c}, giving

$$
F(n)=\coprod_{G} \coprod_{c} F(G, c)
$$

The sets $F(G, c)$ are finite and one would like to describe them individually.

1.2. Overview of the 795 nonic 3 -adic fields

There are 81 nonzero $\left|\mathbb{Q}_{3}(G, c)\right|$ with 22 Galois groups G and 16 discriminant exponents c involved. On the table, groups G are sorted first by the number of cubic subfields: $\geq 2,1$, and then 0 . In the third column, $A=\operatorname{Aut}\left(K / \mathbb{Q}_{3}\right)$ is the centralizer of the Galois group G.

| \|G| | G | $\|A\|$ | 0 | 9 | 10 | 12 | 13 | 15 | 16 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 972 | 9 | | | | 1 | | | | | | | | | | | | |
| 18 | 9 T4 | 3 | | 2 | | 1 | | 6, 3 | 3 | | 9 | | | | | | | |
| 18 | $9 T 5$ | | | | | | | | | 1 | | | | | | | | |
| 36 | 9 98 | | | | | 1 | | 2 | | 3 | 3 | | | | | | | |
| 9 | 9 T1 | 9 | 1 | | | 2 | | | | | | | | 9 | | | | |
| 18 | 9 93 | | | | | | | | | 1 | | | | 1 | | | | 3 |
| 27 | 9 T6 | 3 | | | | 2 | | | | | | | | 6 | | | | |
| 27 | 9 T7 | 3 | | | | 1 | | | 3 | | | | | | | | | |
| 54 | $9 T 10$ | | | | | | | | 6 | 11 | | | | 8 | | | | 24 |
| 54 | $9 T 11$ | | | | | 2 | | | 1 | 8 | | | | 9 | | | | |
| 54 | $9 T 12$ | 3 | | | | | | | | | 9 | | 27 | | | | | |
| 54 | $9 T 13$ | | | 2 | | 1 | | 2 | | 3 | 3 | | 9 | | | | | |
| 81 | $9 T 17$ | 3 | | | | 9 | | | | 9 | | | | 18 | | | | |
| 108 | 9T18 | | | | | | 2 | 4 | | 3 | 12 | | 18 | 9 | | | | |
| 162 | $9 T 20$ | 3 | | | | | 6 | 12 | | 9 | 45 | | | 27 | | | 81 | |
| 162 | $9 T 21$ | | | | | | | | | | | 27 | | | | 27 | | 54 |
| 162 | $9 T 22$ | | | 6 | | 3 | | 6 | | | | | 9 | 9 | 27 | | | |
| 324 | $9 T 24$ | | | | | | | | 6 | 12 | 9 | 27 | 9 | | 27 | 27 | 27 | |
| 36 | 979 | | | | | 1 | | | 1 | | | | | | | | | |
| 72 | 9T14 | | | | 1 | | | | | 3 | | | | | | | | |
| 72 | $9 T 16$ | | | | 1 | | | | | 3 | | | | | | | | |
| 144 | $9 T 19$ | | | 2 | | 2 | 2 | 6 | 2 | | 6 | | | | | | | |

Bold=Unramified

1.3. Tour of the p-adic section of the LMFDB

As said earlier, the LMFDB currently contains the sets $\mathbb{Q}_{p}(n)$ for all $p \leq 199$ and all $n \leq 15$, with information on each field K. E.g., the field K labeled 3.9.21.20 is defined by $x^{9}+12 x^{6}+18 x^{4}+3$.
The degree n of any field factors as $u t p^{w}$ with u and t its unramified and tamely ramified parts. There are w wild slopes $\hat{s}_{1} \leq \cdots \leq \hat{s}_{w}$, as introduced in the next section. The "slope content" of our example (not directly given in the LMFDB) is $\left[\hat{s}_{1}, \hat{s}_{2}\right]_{t}^{u}=\left[2, \frac{17}{6}\right]_{1}^{1}=\left[2, \frac{17}{6}\right]$.
The LMFDB does however always gives the much-harder-to-calculate slope content of the Galois closure L. In our example $G=9 T 24$ has $324=2^{2} 3^{4}$ elements and the slope content of L is

$$
\left[\frac{3}{2}, 2, \frac{5}{2}, \frac{17}{6}\right]_{2}^{2}
$$

At this level, the wild slopes are breaks in the Artin upper numbering of the ramification filtration on G. They consist of the wild slopes already visible in K, and also some more hidden slopes.

2.1. The canonical filtration of a p-adic extension

Any $K / F \in F(n)$ has a canonical filtration obtained by climbing from F to K via suitable minimally ramified subextensions. To focus on the main phenomena, we henceforth restrict to $u=t=1$ so $n=p^{w}$.

As we'll see, for any 2 -adic field F, the picture arises from many octic extensions K / F, e.g. from 32 in the case $F=\mathbb{Q}_{2}$. The filtration takes the form

$$
F=K_{0} \subset K_{1} \subset K_{2} \subset K_{3}=K
$$

with each $\left[K_{i}: K_{i-1}\right]=2$.

The numerical invariants are captured in three equivalent ways:

$$
\begin{aligned}
\text { heights } & \left\langle h_{1}, h_{2}, h_{3}\right\rangle
\end{aligned}=\langle 1,5,15\rangle, ~ 子, ~=\left[1,2, \frac{5}{2}\right],
$$

We switch to focusing on wild ramification only, writing

$$
\operatorname{cond}\left(K_{i} / K_{j}\right)=c\left(K_{i} / K_{j}\right)-\operatorname{deg}\left(K_{i} / K_{j}\right)+1
$$

The definitions are then $h_{i}=\operatorname{cond}\left(K_{i} / K_{0}\right)$ and $r_{i}=\operatorname{cond}\left(K_{i} / K_{i-1}\right)$. Accordingly, we also switch from the website's Artin-Fontaine slopes \hat{s}_{i} to the Serre-Swan slopes s_{i} via $\hat{s}_{i}=s_{i}+1$.

When the canonical filtration has fewer than w steps we keep a uniform notation that refers to nonexistent fields:

Here the filtration is $F=K_{0} \subset K_{1} \subset K_{2} \subset K_{3}=K$. The invariants are

$$
I=\left\langle 1, \frac{17}{3}, 15\right\rangle=\left[1, \frac{7}{3}, \frac{7}{3}\right]=\left(1, \frac{11}{3}, \frac{11}{3}\right) .
$$

When K_{i} is nonexistent, h_{i} is no longer forced to be integral. Similarly too, a ram r_{j} repeated ρ times is now only forced to have a denominator dividing $P_{\rho}(p):=p^{\rho-1}+p^{\rho-2}+\cdots+p+1$.

2.2. Conversion formulas

The three ways of describing a ramification invariant / interrelate via

$$
h_{k} \stackrel{2 a}{=} \sum_{j=1}^{k} \phi\left(p^{j}\right) s_{j}, \quad h_{k} \stackrel{2 b}{=} \sum_{j=1}^{k} p^{k-j} r_{j}
$$

$s_{k} \stackrel{\text { 1a }}{=} \frac{h_{k}-h_{k-1}}{\phi\left(p^{k}\right)}$,

$$
s_{k} \stackrel{3}{=} \frac{r_{k}}{\phi\left(p^{k}\right)}+\sum_{j=1}^{k-1} \frac{r_{j}}{p^{j}}
$$

$r_{k} \stackrel{1 b}{=} h_{k}-p h_{k-1}, \quad r_{k} \stackrel{4}{=} \phi\left(p^{k}\right) s_{k}-\phi(p) \sum_{j=1}^{k-1} \phi\left(p^{j}\right) s_{j}$.
1a captures the definition of slope as rise/run. 1b emphasizes that rams measure how K_{k} is more ramified than say the algebra K_{k-1}^{p}. 2 a and $2 b$ are their inversions, each intuitive in their own right. $3=1 a \circ 2 b$ and $4=1 b \circ 2 a$ are less directly intuitive.

3.1. Allowed $r_{1}=\cdots=r_{\rho}$ in one-step extensions

The set of r_{1} arising in one-step degree p^{ρ} extensions of F is very simple and depends only on the ramification index $e=\operatorname{ord}_{\Pi}(p)$!

In the case of $e=\infty$, i.e. function fields, it is

$$
\mathcal{R}_{p, \infty, \rho}=\frac{\mathbb{Z}_{\geq 1}-p \mathbb{Z}_{\geq 1}}{P_{\rho}(p)}=\frac{\mathbb{Z}_{\geq 1}-p \mathbb{Z}_{\geq 1}}{p^{\rho-1}+p^{\rho-2}+\cdots p+1}
$$

In the case $e<\infty$, i.e. extensions of \mathbb{Q}_{p}, it is

$$
\mathcal{R}_{p, e, \rho}=\left(\mathcal{R}_{p, \infty, \rho} \cap(0, p e)\right) \cup \begin{cases}\{\text { pe }\} & \text { if } \rho=1 \\ \{ \} & \text { if } \rho>1\end{cases}
$$

The conversion formulas are trivial in the one-step extension context, $s_{1}=\frac{r_{1}}{p-1}$ and $h_{\rho}=P_{\rho}(p) r_{1}$.

3.2. Example: One-step extensions for $p=2$

From the previous slide for multiplicities $\rho=1$ and $\rho=2$,

$$
\begin{array}{llll|llll}
\mathcal{R}_{2, \infty, 1} & =\left\{\begin{array}{lllll}
& 1, & & 3, & \ldots \\
\mathcal{R}_{2, \infty, 2} & =\left\{\frac{1}{3},\right. & 1, & \frac{5}{3}, & \frac{7}{3}, \\
3, & \ldots & \} .
\end{array},\right.
\end{array}
$$

The cutoff for $e=1$ is indicated and so the corresponding sets are

$$
\left.\begin{array}{rlllll}
\mathcal{R}_{2,1,1} & =\left\{\begin{array}{llllll}
& 1, & & 2
\end{array}\right\}, \\
\mathcal{R}_{2,1,2} & =\left\{\frac{1}{3},\right. & 1, & \frac{5}{3} &
\end{array}\right\} .
$$

Over \mathbb{Q}_{2}, the quadratic fields for the rams 1 and 2 are respectively $\mathbb{Q}_{2}(\sqrt{d})$ for $d \in\{-1,-1 *\}$ and $d \in\{2,2 *,-2,-2 *\}$, with say $*=5$. The quartic fields appear on the LMFDB as

3.3. Occurring invariants / in general extensions

Fix a ground field F with $\operatorname{ord}_{\Pi}(p)=e$ and consider its totally ramified extensions of degree p^{w}.
Break up this set of extensions according to their multiplicity vector $m=\left(m_{1}, \ldots, m_{k}\right)$. Let $M_{i}=\sum_{j=1}^{i} m_{j}$. Let $\mathcal{I}_{p, e, m}$ be the set of occurring invariants I. Then necessarily $\mathcal{I}_{p, e, m}$ is in

$$
\widehat{\mathcal{I}}_{p, e, m}=\{(\overbrace{r(1), \ldots, r(1)}^{m_{1}}, \ldots, \overbrace{r(k), \ldots, r(k)}^{m_{k}}): r(i) \in \mathcal{R}_{p, e p^{m_{i-1}, m_{i}}}\} .
$$

The index gymnastics hide a simple Cartesian product! E.g. $\widehat{\mathcal{I}}_{p, e,(3,2)}$ consists of 5-tuples ($r_{1}, r_{1}, r_{1}, r_{4}, r_{4}$) with $\left(r_{1}, r_{4}\right) \in \mathcal{R}_{p, e, 3} \times \mathcal{R}_{p, p^{3} e, 2}$.
The set $\mathcal{I}_{p, e, m}$ is then the subset of $\widehat{\mathcal{I}}_{p, e, m}$ such that the list of rams $r(1), \ldots, r(k)$, or equivalently the list of slopes $s(1), \ldots, s(k)$, is strictly increasing. The elementary nature of $\mathcal{I}_{p, e, w}=\coprod_{m} \mathcal{I}_{p, e, m}$ is illustrated by the next slide by $\mathcal{I}_{3,1,2}=\mathcal{I}_{3,1,(1,1)} \amalg \mathcal{I}_{3,1,(2)}$.

3.4. Invariants for tot. ram. nonic 3-adic fields

rams $\left(r_{1}, r_{2}\right)$ and slopes $\left[\hat{s}_{1}, \hat{s}_{2}\right]$ with $m=(1,1)$ before $m=(2)$:

$(1,2)$	$(2,2)$	$(3,2)$	$\begin{aligned} & (0.25,0.25) \\ & (0.50,0.50) \end{aligned}$	$[1.5,1.66]$	[2, 2.0	5, 2.33]	$\begin{aligned} & {[1.125,1.125]} \\ & {[1.250,1.250]} \end{aligned}$
$(1,4)$	$(2,4)$	$(3,4)$	$(1.00,1.00)$	[1.5, 2.00]	[2, 2.33]	[2.5, 2.66]	[1.500, 1.500]
$(1,5)$	$(2,5)$	$(3,5)$	$(1.25,1.25)$	[1.5, 1.16]	[2, 2.50]	[2.5, 2.83]	[1.625, 1.625]
$(1,7)$	$(2,7)$	$(3,7)$	$(1.75,1.75)$	[1.5, 2.50]	[2, 2.83]	[2.5, 3.16]	[1.875, 1.875]
$(1,8)$	$(2,8)$	$(3,8)$	$\begin{aligned} & (2.00,2.00) \\ & (2.50,2.50) \\ & (2.75,2.75) \end{aligned}$	[1.5, 2.66]	[2, 3.00]	[2.5, 3.33]	[2.000, 2.000]
$(1,9)$	$(2,9)$	$(3,9)$		[1.5, 2.83]	[2, 3.16]	[2.5, 3.50]	
							$\begin{aligned} & {[2.250,2.250]} \\ & {[2.375,2.375]} \end{aligned}$

The Cartesian structure of $\widehat{\mathcal{I}}_{3,1,(1,1)}$ is visible in rams as $\{1,2,3\} \times\{1,2,4,5,7,8,9\}$, but obscured in slopes.

The Cartesian structure on the $(1,1)$ part is still visible in the total masses to the right, where K / F has mass $|1 / \operatorname{Aut}(K / F)|$.

			2
4			2
12	12	18	6
12	12	18	2
36	36	54	6
36	36	54	6
54	54	81	
			6

4.1. From an invariant / to its picture

An invariant $I=h=s=r$ for degree p^{w} extensions determines a picture in the window $\left[0, p^{w}\right] \times\left[0, \hat{s}_{w}\right]$. For example

$$
I=\langle 11,62,252\rangle=[5.5,8.5,10 . \overline{5}]=(11,29,66)
$$

determines

(The points in the u-column will give constraints on the coefficient t_{u} of the x^{u} terms in Eisenstein polynomials.)
Q. Can you guess the recipe for passing from / to the picture?

4.2. The recipe for drawing the $/$-picture, part 1

There are w closed bands. The top edge of the $i^{\text {th }}$ band B_{i} goes from $\left(0, \hat{s}_{i}\right)$ to $\left(p^{w}, s_{j}\right)$. All drawn points (u, v) are integral and, besides $(0,1)$ and $\left(p^{w}, 0\right)$, occur only in the bands. Write $u^{\prime}=u / p^{w}$. Then an integral point $(u, v) \in B_{i}$ is drawn iff its u^{\prime} has exact denominator p^{i} or it's on the boundary. It is drawn solidly iff the first condition holds. There is always a unique point on the lower edge, drawn as o or \bullet. There is at most one point on the upper edge, drawn as \circ.

4.3. The recipe for drawing the $/$-picture, part 2

Define the scaled heights and scaled rams via $h_{i}^{\prime}=h_{i} / p^{i}$ and $r_{i}^{\prime}=r_{i} / p$, and indicate these variants by double delimiters. So the current example becomes

$$
I=\left\langle\left\langle 3 \frac{2}{3}, 6 \frac{8}{9}, 9 \frac{1}{3}\right\rangle\right\rangle=[5.5,8.5,10 . \overline{5}]=\left(\left(3 \frac{2}{3}, 9 \frac{2}{3}, 22\right)\right)
$$

The $i^{\text {th }} \circ$ or \bullet is at $\left(u_{i}^{\prime}, v_{i}\right)=\left(\left\langle h_{i}^{\prime}\right\rangle,\left\lceil h_{i}^{\prime}\right\rceil\right)$ so that e.g. the first comes from $3 \frac{2}{3}$ and is at $\left(u_{1}^{\prime}, v_{1}\right)=\left(\frac{2}{3}, 4\right)$. Equivalently, the lower edge of B_{i} goes through $\left(p^{w}, h_{i}^{\prime}\right)$. Also, B_{i} contains exactly $\left\lfloor r_{i}^{\prime}\right\rfloor \bullet$'s, and then also a \bullet iff r_{i}^{\prime} is nonintegral.

5.1. The Krasner-Monge parametrized polynomial

Index a point (u, v) by the integer $j=p^{w}(v-1)+u$, so that the $i^{\text {th }}$ - or o becomes $j=p^{w} h_{i}^{\prime}$. Introduce variables a_{j}, b_{j} and c_{j} for drawn points in bands of the form $\bullet \bullet$, and \circ. Form the polynomial

$$
\pi+\sum_{(u, v) \text { as }} a_{j} \pi^{v} x^{u}+\sum_{(u, v) \text { as }} b_{j} \pi^{v} x^{u}+\sum_{(u, v) \text { as。 }} c_{j} \pi^{v} x^{u}+x^{p^{w}}
$$

Our earlier example $I=\left[1, \frac{11}{6}\right]=\left(\left(\frac{2}{3}, 2 \frac{1}{3}\right)\right)=\left\langle\left\langle\frac{2}{3}, 1 \frac{4}{9}\right\rangle\right\rangle$ yields

For $\pi=3$, it's $\left(3+9 c_{9}\right)+9 a_{13} x^{4}+9 b_{14} x^{5}+3 a_{6} x^{6}+9 b_{16} x^{7}+x^{9}$.

Notation for the Krasner-Monge theorem

Let F be a p-adic field with residue field \mathbb{F}_{q} with $q=p^{f}$.
For d a divisor of f, the additive map

$$
\mathbb{F}_{q} \rightarrow \mathbb{F}_{q}: k \mapsto k^{p^{d}}-k
$$

has kernel $\mathbb{F}_{p^{d}}$ and so image $T_{d} \subset \mathbb{F}_{q}$ of index p^{d}.
Choose a uniformizer π and a lift $\kappa \subset \mathcal{O}$ of $\mathbb{F}_{p^{f}}$. Require $0 \in \kappa$ and write $\kappa^{\times}=\kappa-\{0\}$. For each divisor d of f, choose a lift $\kappa_{d} \subset \kappa$ of \mathbb{F}_{q} / T_{d}, so that $\left|\kappa_{d}\right|=p^{d}$ and $\kappa_{f}=\kappa$. For $F=\mathbb{Q}_{p}$, we always just take $\pi=p$ and $\kappa=\{0,1, \ldots, p-1\}$.

For a ramification invariant I, let

- α be its number of \bullet 's;
- β be its number of \bullet 's;
- $\gamma=\sum_{j} \operatorname{gcd}(\rho(j), f)$ where j runs over indices of o's and $\rho(j)$ it the number of times the corresponding slope is repeated.

Krasner-Monge theorem

Theorem

Let F be a p-adic field with absolute ramification index $e \in \mathbb{Z}_{\geq 1}$ and chosen π and κ_{d} as on the previous slide. Let $I \in \mathcal{I}_{p, e, w}$ be a possible ramification invariant for degree p^{w} extensions of F. Consider the polynomials in the corresponding Krasner-Monge family

$$
\pi+\sum_{(u, v) \text { as }} a_{j} \pi^{v} x^{u}+\sum_{(u, v) \text { as } \bullet} b_{j} \pi^{v} x^{u}+\sum_{(u, v) \text { as。 }} c_{j} \pi^{v} x^{u}+x^{p^{w}}
$$

with $a_{j} \in \kappa^{\times}, b_{j} \in \kappa$, and $c_{j} \in \kappa_{\operatorname{gcd}(\rho(j), f)}$. Then the corresponding extensions are in $F(I)$, with each K represented $\frac{p^{\gamma}}{|\operatorname{Aut}(K / F)|}$ times.

Corollary

The total number of extensions in $F(I)$ is $\geq(q-1)^{\alpha} q^{\beta}$, with equality if $\gamma=0$.

6.1 The case $I=\left[\hat{s}_{1}, \hat{s}_{2}\right]=\left[2, \frac{17}{6}\right]$ over \mathbb{Q}_{3}

The database says there are 36 fields falling in four packets of nine. As said before, the family is

$$
\begin{aligned}
& f\left(a_{6}, a_{13}, b_{14}, b_{16}, c_{9}, x\right)= \\
& \quad\left(3+9 c_{9}\right)+9 a_{13} x^{4}+9 b_{14} x^{5}+3 a_{6} x^{6}+9 b_{16} x^{7}+x^{9},
\end{aligned}
$$

Since there is just one c and $f=1$, the ambiguity parameter is $\gamma=1$ and each field K has $p^{\gamma}=3$ near-canonical defining polynomials. The ambiguity is easily resolved by setting a parameter to 0 and the packets are cleanly described:

$$
\begin{array}{ll}
f\left(1,2,0, b_{16}, c_{9}, x\right) & \text { gives } 9 T 13 \text { and hidden slopes }[5 / 2]_{2} \\
f\left(1,1, b_{14}, b_{16}, 0, x\right) & \text { gives } 9 T 18 \text { and hidden slopes }[5 / 2]_{2}^{2} \\
f\left(2,2,0, b_{16}, c_{9}, x\right) & \text { gives } 9 T 22 \text { and hidden slopes }[3 / 2,5 / 2]_{2} \\
f\left(2,1, b_{14}, b_{16}, 0, x\right) & \text { gives } 9 T 24 \text { and hidden slopes }[3 / 2,5 / 2]_{2}^{2}
\end{array}
$$

6.2 The case $I=\left[\hat{s}_{1}, \hat{s}_{2}\right]=\left[\frac{5}{2}, \frac{17}{6}\right]$ over \mathbb{Q}_{3}

The database says that in this case there are 18 fields falling into two packets of nine. The Krasner-Monge family is

$$
g\left(\alpha_{14}, \beta_{12}, \beta_{16}, x\right)=3+9 \beta_{12}+9 \alpha_{14} x^{5}+9 \beta_{16} x^{7}+x^{9}
$$

Defining polynomials are in this case unique and

$$
\begin{array}{ll}
g\left(2, \beta_{12}, \beta_{16}, x\right) & \text { gives } 9 T 11 \text { and hidden slopes }[2]_{2} \\
g\left(1, \beta_{12}, \beta_{16}, x\right) & \text { gives } 9 T 18 \text { and hidden slopes }[2]_{2}^{2}
\end{array}
$$

In general, resolvent constructions should have nice descriptions via the universal families. For example, $9 T 13$ from the previous slide and $9 T 11$ are the same abstract group. The bijection between

- the nine $9 T 13$ fields defined by $f\left(1,2,0, b_{16}, c_{9}, x\right)$ and
- the nine $9 T 11$ fields defined by $g\left(2, \beta_{12}, \beta_{16}, x\right)$ is given by $c_{9}=\beta_{12}$ and $b_{16}=\beta_{16}+1-\beta_{12}{ }^{2}$.

6.3 The case $I=\left[\hat{1}_{1}, \hat{s}_{2}\right]=\left[3 / 2, \frac{8}{3}\right]$ over \mathbb{Q}_{3}

The database gives five types of fields. The family is

$$
\begin{aligned}
& f\left(a_{3}, a_{11}, b_{13}, b_{14}, c_{15}\right)= \\
& \quad 3+9 x^{2} a_{11}+3 x^{3} a_{3}+9 x^{4} b_{13}+9 x^{5} b_{14}+9 x^{6} c_{15}+x^{9}
\end{aligned}
$$

The five types are

$$
\begin{array}{llll}
\# & \mu & & \\
\cline { 1 - 2 } & 3 & f\left(1,2, b_{13}, b_{13}+2, c_{15}, x\right) & \text { gives } 9 T 12 \text { and h.s. }[5 / 2]_{2} \\
18 & 6 & f\left(1,2, b_{13}, b_{13}+{ }_{1}^{0}, c_{15}, x\right) & \text { gives } 9 T 20 \text { and h.s }[5 / 2]_{2}^{3} \\
9 & 9 & f\left(2,2, b_{13}, b_{14}, \star, x\right) & \text { gives } 9 T 18 \text { and h.s. }[3 / 2]_{2}^{2} \\
27 & 9 & f\left(2,1, b_{13}, b_{14}, c_{15}, x\right) & \text { gives } 9 T 20 \text { and h.s }[3 / 2,5 / 2]_{2} \\
9 & 9 & f\left(1,1, b_{13}, b_{14}, \star, x\right) & \text { gives } 9 T 24 \text { and h.d. }[3 / 2,2]_{2}^{2}
\end{array}
$$

Here \star can be any element of $\{0,1,2\}$ without changing the field. Otherwise, different parameters give different fields.

Commented main references

Much of this material has origin in:
M. Krasner, Sur la primitivité des corps p-adiques, Mathematica (Cluj) 13 (1937) 72-191.

Krasner's results were modernized in:
P. Deligne, Les corps locaux de caractéristique p, limites de corps locaux de caractéristique 0 , in Representations of Reductive Groups over a Local Field (1984), pp. 119-157.

The original database from which the LMFDB database grew:
J. W. Jones and D. P. Roberts, A database of local fields, J. Symbolic Comput. 41(1) (2006) 80-97.

A modernization which, like Krasner, emphasizes polynomials: M. Monge, A family of Eisenstein polynomials generating totally ramified extensions, identification of extensions and construction of class fields. Int. J. Number Theory 10 (2014), no. 7, 1699-1727.

