Towards improving the Database of Local Fields

David P. Roberts University of Minnesota, Morris

November 12, 2021

Two-paragraph summary

The *p*-adic field section of the LMFDB tabulates degree *n* extensions of \mathbb{Q}_p , including for all $n \leq 15$ and $p \leq 199$. For example, always up to isomorphism, there are 795 nonic extensions K/\mathbb{Q}_3 and 1823 octic extensions K/\mathbb{Q}_2 . Interesting invariants include visible slopes, hidden slopes, and Galois groups.

The main framework for improvement is to focus first on visible slopes. Here there is a strong general theory valid for general K/F, not just the case $F = \mathbb{Q}_p$. It centers on Krasner-Monge near-canonical polynomials for totally ramified extensions K/F. These polynomials let one collect all extensions of a given F with given visible slopes into a single parameterized family, and the dependence on F is mild. The family structure then facilitates the investigation of hidden slopes and Galois groups.

Overview

- 1. Introduction, including a tour of the database.
- 2. The ramification invariant I of an extension K/F, as captured in the totally wild degree p^w case by

heights	$\langle h_1,\ldots,h_w\rangle$,
slopes	$[s_1,\ldots,s_w]$,
or <i>rams</i>	$(r_1,\ldots,r_w).$

- 3. The set $\ensuremath{\mathcal{I}}$ of possible ramification invariants.
- 4. From ramification invariants to pictures.
- 5. From pictures to near-canonical polynomials.
- 6. Hidden slopes and Galois groups in two sample families.

1.1. Notation for classifyng extensions

Let $n \in \mathbb{Z}_{\geq 1}$ and let F be a field. An important problem is to describe the set F(n) of isomorphism classes of separable field extensions K/F of degree n.

Let G run over conjugacy classes of transitive subgroups of S_n . Then Galois theory gives a natural decomposition

$$F(n) = \coprod_G F(G).$$

One would like to describe each F(G) individually.

Now let F be a p-adic field, i.e. a finite extension of \mathbb{Q}_p or $\mathbb{F}_p((t))$, with uniformizer $\pi \in \Pi \subset \mathcal{O} \subset F$ as usual. Then every K/F has a discriminant ideal Π^c , giving

$$F(n) = \coprod_G \coprod_c F(G, c).$$

The sets F(G, c) are finite and one would like to describe them individually.

1.2. Overview of the 795 nonic 3-adic fields

There are 81 nonzero $|\mathbb{Q}_3(G, c)|$ with 22 Galois groups G and 16 discriminant exponents c involved. On the table, groups G are sorted first by the number of cubic subfields: ≥ 2 , 1, and then 0. In the third column, $A = \operatorname{Aut}(K/\mathbb{Q}_3)$ is the centralizer of the Galois group G.

G	G	A	0	9	10	12	13	15	16	18	19	20	21	22	23	24	25	26
9	9 T 2	9				1												
18	9 <i>T</i> 4	3		2		1		6, <i>3</i>	3		9							
18	9 T 5									1								
36	978					1		2		3	3							
9	9T1	9	1			2								9				
18	9T3									1				1				3
27	9T6	3				2								6				
27	9T7	3				1			3									
54	9T10								6	11				8				24
54	9T11					2			1	8				9				
54	9T12	3									9		27					
54	9 <i>T</i> 13			2		1		2		3	3		9					
81	9T17	3				9				9				18				
108	9 <i>T</i> 18						2	4		3	12		18	9				
162	9 <i>T</i> 20	3					6	12		9	45			27			81	
162	9 <i>T</i> 21			_		_						27				27		54
162	9/22			6		3		6	_				9	9	27			
324	9 <i>T</i> 24								6	12	9	27	9		27	27	27	
36	979					1			1	_								
72	9/14				1					3								
72	9 <i>1</i> ⁻ 16			-	1	-	-			3	-							
144	9 <i>T</i> 19			2		2	2	6	2		6							

Bold=Unramified

Italic=partially ramified

Regular=totally ramified

1.3. Tour of the p-adic section of the LMFDB

As said earlier, the LMFDB currently contains the sets $\mathbb{Q}_p(n)$ for all $p \leq 199$ and all $n \leq 15$, with information on each field K. E.g., the field K labeled 3.9.21.20 is defined by $x^9 + 12x^6 + 18x^4 + 3$.

The degree *n* of any field factors as utp^w with *u* and *t* its unramified and tamely ramified parts. There are *w* wild slopes $\hat{s}_1 \leq \cdots \leq \hat{s}_w$, as introduced in the next section. The "slope content" of our example (not directly given in the LMFDB) is $[\hat{s}_1, \hat{s}_2]_t^u = [2, \frac{17}{6}]_1^1 = [2, \frac{17}{6}]$.

The LMFDB does however always gives the much-harder-to-calculate slope content of the Galois closure *L*. In our example G = 9T24 has $324 = 2^23^4$ elements and the slope content of *L* is

$$\left[\frac{3}{2}, 2, \frac{5}{2}, \frac{17}{6}\right]_2^2$$
.

At this level, the wild slopes are breaks in the Artin upper numbering of the ramification filtration on G. They consist of the wild slopes already **visible** in K, and also some more *hidden* slopes.

2.1. The canonical filtration of a p-adic extension

Any $K/F \in F(n)$ has a canonical filtration obtained by climbing from F to K via suitable minimally ramified subextensions. To focus on the main phenomena, we henceforth restrict to u = t = 1 so $n = p^w$.

As we'll see, for any 2-adic field F, the picture arises from many octic extensions K/F, e.g. from 32 in the case $F = \mathbb{Q}_2$. The filtration takes the form

$$F = K_0 \subset K_1 \subset K_2 \subset K_3 = K$$

with each $[K_i : K_{i-1}] = 2$.

The numerical invariants are captured in three equivalent ways:

We switch to focusing on wild ramification only, writing

$$\operatorname{cond}(K_i/K_j) = c(K_i/K_j) - \operatorname{deg}(K_i/K_j) + 1$$

The definitions are then $h_i = \text{cond}(K_i/K_0)$ and $r_i = \text{cond}(K_i/K_{i-1})$. Accordingly, we also switch from the website's Artin-Fontaine slopes \hat{s}_i to the Serre-Swan slopes s_i via $\hat{s}_i = s_i + 1$. When the canonical filtration has fewer than w steps we keep a uniform notation that refers to nonexistent fields:

Here the filtration is $F = K_0 \subset K_1 \subset K_2 \subset K_3 = K$. The invariants are

$$I = \langle 1, \frac{17}{3}, 15 \rangle = \left[1, \frac{7}{3}, \frac{7}{3}\right] = \left(1, \frac{11}{3}, \frac{11}{3}\right).$$

When K_i is nonexistent, h_i is no longer forced to be integral. Similarly too, a ram r_j repeated ρ times is now only forced to have a denominator dividing $P_{\rho}(p) := p^{\rho-1} + p^{\rho-2} + \cdots + p + 1$.

2.2. Conversion formulas

The three ways of describing a ramification invariant I interrelate via

$$h_{k} \stackrel{2a}{=} \sum_{j=1}^{k} \phi(p^{j}) s_{j}, \qquad h_{k} \stackrel{2b}{=} \sum_{j=1}^{k} p^{k-j} r_{j},$$

$$s_{k} \stackrel{1a}{=} \frac{h_{k} - h_{k-1}}{\phi(p^{k})}, \qquad s_{k} \stackrel{3}{=} \frac{r_{k}}{\phi(p^{k})} + \sum_{j=1}^{k-1} \frac{r_{j}}{p^{j}},$$

$$r_{k} \stackrel{1b}{=} h_{k} - ph_{k-1}, \quad r_{k} \stackrel{4}{=} \phi(p^{k}) s_{k} - \phi(p) \sum_{j=1}^{k-1} \phi(p^{j}) s_{j}.$$

1a captures the definition of slope as rise/run. 1b emphasizes that rams measure how K_k is more ramified than say the algebra K_{k-1}^p . 2a and 2b are their inversions, each intuitive in their own right. 3 = 1a \circ 2b and 4 = 1b \circ 2a are less directly intuitive. The set of r_1 arising in one-step degree p^{ρ} extensions of F is very simple and depends only on the ramification index $e = \operatorname{ord}_{\Pi}(p)!$

In the case of $e = \infty$, i.e. function fields, it is

$$\mathcal{R}_{
ho,\infty,
ho}=rac{\mathbb{Z}_{\geq 1}-
ho\mathbb{Z}_{\geq 1}}{P_{
ho}(
ho)}=rac{\mathbb{Z}_{\geq 1}-
ho\mathbb{Z}_{\geq 1}}{
ho^{
ho-1}+
ho^{
ho-2}+\cdots
ho+1}.$$

In the case $e < \infty$, i.e. extensions of \mathbb{Q}_p , it is

$$\mathcal{R}_{p,e,
ho} = (\mathcal{R}_{p,\infty,
ho} \cap (0, pe)) \cup \left\{ egin{array}{c} \{pe\} & ext{if }
ho = 1, \ \{ \ \} & ext{if }
ho > 1. \end{array}
ight.$$

The conversion formulas are trivial in the one-step extension context, $s_1 = \frac{r_1}{p-1}$ and $h_\rho = P_\rho(p)r_1$.

3.2. Example: One-step extensions for p = 2

From the previous slide for multiplicities $\rho = 1$ and $\rho = 2$,

The cutoff for e = 1 is indicated and so the corresponding sets are

$$\begin{array}{rcl} \mathcal{R}_{2,1,1} &=& \{ & 1, & 2 \ \}, \\ \mathcal{R}_{2,1,2} &=& \{ & \frac{1}{3}, & 1, & \frac{5}{3} & \}. \end{array}$$

Over \mathbb{Q}_2 , the quadratic fields for the rams 1 and 2 are respectively $\mathbb{Q}_2(\sqrt{d})$ for $d \in \{-1, -1*\}$ and $d \in \{2, 2*, -2, -2*\}$, with say * = 5. The quartic fields appear on the LMFDB as

$(r_1, r_2) = (1/3, 1/3)$	(r_1, r_2)	=(1,1)	$(r_1, r_2) = (5/3, 5/3)$
$x^4 + 2x + 2 [4/3, 4/3]_3^2 S_4$	$ x^4 + 2x^3 + 2x^2 $	$^{2}+2$ [2,2] ³ A_{4}	$x^4 + 4x^2 + 4x + 2 [8/3, 8/3]_3^2 S_4$
	$x^4 + 2x^3$	$+2 \ [2,2]^2 \ D_4$	$x^4 + 4x^2 + 2 [8/3, 8/3]_3^2 S_4$
	$x^{4} + 2x^{3}$	$+ 6 \ [2,2]^2 \ D_4$	

3.3. Occurring invariants *I* in general extensions

Fix a ground field F with $\operatorname{ord}_{\Pi}(p) = e$ and consider its totally ramified extensions of degree p^w .

Break up this set of extensions according to their multiplicity vector $m = (m_1, \ldots, m_k)$. Let $M_i = \sum_{j=1}^i m_j$. Let $\mathcal{I}_{p,e,m}$ be the set of occurring invariants *I*. Then necessarily $\mathcal{I}_{p,e,m}$ is in

$$\widehat{\mathcal{I}}_{p,e,m} = \{(\overbrace{r(1),\ldots,r(1)}^{m_1},\ldots,\overbrace{r(k),\ldots,r(k)}^{m_k}): r(i) \in \mathcal{R}_{p,ep^{M_{i-1}},m_i}\}.$$

The index gymnastics hide a simple Cartesian product! E.g. $\widehat{\mathcal{I}}_{p,e,(3,2)}$ consists of 5-tuples $(r_1, r_1, r_1, r_4, r_4)$ with $(r_1, r_4) \in \mathcal{R}_{p,e,3} \times \mathcal{R}_{p,p^3e,2}$.

The set $\mathcal{I}_{p,e,m}$ is then the subset of $\widehat{\mathcal{I}}_{p,e,m}$ such that the list of rams $r(1), \ldots, r(k)$, or equivalently the list of slopes $s(1), \ldots, s(k)$, is strictly increasing. The elementary nature of $\mathcal{I}_{p,e,w} = \coprod_m \mathcal{I}_{p,e,m}$ is illustrated by the next slide by $\mathcal{I}_{3,1,2} = \mathcal{I}_{3,1,(1,1)} \coprod \mathcal{I}_{3,1,(2)}$.

3.4. Invariants for tot. ram. nonic 3-adic fields

rams (r_1, r_2) and slopes $[\hat{s}_1, \hat{s}_2]$ with m = (1, 1) before m = (2):

(1,1) (1,2)	(2, 1) (2, 2)	(3,1) (3,2)	(0.25, 0.25) (0.50, 0.50)	[1.5, 1.50] [1.5, 1.66]	[2, 1.83] [2, 2.00]	[2.5, 2.16] [2.5, 2.33]	[1.125, 1.125] [1.250, 1.250]
(1,4) (1,5)	(2,4) (2,5)	(3,4) (3,5)	(1.00, 1.00) (1.25, 1.25)	[1.5, 2.00] [1.5, 1.16]	[2, 2.33] [2, 2.50]	[2.5, 2.66] [2.5, 2.83]	[1.500, 1.500] [1.625, 1.625]
(1,7) (1,8) (1,9)	(2,7) (2,8) (2,9)	(3,7) (3,8) (3,9)	(1.75, 1.75) (2.00, 2.00)	[1.5, 2.50] [1.5, 2.66] [1.5, 2.83]	[2, 2.83] [2, 3.00] [2, 3.16]	[2.5, 3.16] [2.5, 3.33] [2.5, 3.50]	[1.875, 1.875] [2.000, 2.000]
			(2.50, 2.50) (2.75, 2.75)			<u> </u>	[2.250, 2.250] [2.375, 2.375]

The	Cartesian	structure	of	$\widehat{\mathcal{I}}_{3,1,(1)}$.,1)	is	visi	ble
in rar	ms as <mark>{1</mark>	$,2,3\} imes\{1$., 2,	4, 5,	7,	8,9]	}, ł	out
obscu	red in slop	es.						

The Cartesian structure on the (1, 1) part is still visible in the total masses to the right, where K/F has mass $|1/\operatorname{Aut}(K/F)|$.

			2
4			2
12	12	18	6
12	12	18	2
36	36	54	6
36	36	54	6
54	54	81	
L			6
			6

4.1. From an invariant I to its picture

An invariant I = h = s = r for degree p^w extensions determines a picture in the window $[0, p^w] \times [0, \hat{s}_w]$. For example

 $I = \langle 11, 62, 252 \rangle = [5.5, 8.5, 10.\overline{5}] = (11, 29, 66)$

determines

(The points in the *u*-column will give constraints on the coefficient t_u of the x^u terms in Eisenstein polynomials.)

Q. Can you guess the recipe for passing from I to the picture?

4.2. The recipe for drawing the *I*-picture, part 1

There are *w* closed bands. The top edge of the *i*th band B_i goes from $(0, \hat{s}_i)$ to (p^w, s_j) . All drawn points (u, v) are integral and, besides (0, 1) and $(p^w, 0)$, occur only in the bands. Write $u' = u/p^w$. Then an integral point $(u, v) \in B_i$ is drawn iff its u' has exact denominator p^i or it's on the boundary. It is drawn solidly iff the first condition holds. There is always a unique point on the lower edge, drawn as \circ or \bullet . There is at most one point on the upper edge, drawn as \circ .

4.3. The recipe for drawing the *I*-picture, part 2

Define the scaled heights and scaled rams via $h'_i = h_i/p^i$ and $r'_i = r_i/p$, and indicate these variants by double delimiters. So the current example becomes

 $I = \langle \langle 3\frac{2}{3}, 6\frac{8}{9}, 9\frac{1}{3} \rangle \rangle = [5.5, 8.5, 10.\overline{5}] = ((3\frac{2}{3}, 9\frac{2}{3}, 22)).$

The $i^{\text{th}} \circ \text{or} \bullet \text{is at } (u'_i, v_i) = (\langle h'_i \rangle, \lceil h'_i \rceil) \text{ so that e.g. the first } \bullet \text{ comes from } 3\frac{2}{3} \text{ and is at } (u'_1, v_1) = (\frac{2}{3}, 4).$ Equivalently, the lower edge of B_i goes through (p^w, h'_i) . Also, B_i contains exactly $\lfloor r'_i \rfloor \bullet$'s, and then also a \bullet iff r'_i is nonintegral.

5.1. The Krasner-Monge parametrized polynomial

Index a point (u, v) by the integer $j = p^w(v - 1) + u$, so that the *i*th • or \circ becomes $j = p^w h'_i$. Introduce variables a_j , b_j and c_j for drawn points in bands of the form •, •, and •. Form the polynomial

$$\pi + \sum_{(u,v) \text{ as } \bullet} a_j \pi^v x^u + \sum_{(u,v) \text{ as } \bullet} b_j \pi^v x^u + \sum_{(u,v) \text{ as } \circ} c_j \pi^v x^u + x^{p^w}$$

Our earlier example $I = [1, \frac{11}{6}] = ((\frac{2}{3}, 2\frac{1}{3})) = \langle \langle \frac{2}{3}, 1\frac{4}{9} \rangle \rangle$ yields

For $\pi = 3$, it's $(3 + 9c_9) + 9a_{13}x^4 + 9b_{14}x^5 + 3a_6x^6 + 9b_{16}x^7 + x^9$.

Notation for the Krasner-Monge theorem

Let F be a p-adic field with residue field \mathbb{F}_q with $q = p^f$.

For d a divisor of f, the additive map

$$\mathbb{F}_q o \mathbb{F}_q : k \mapsto k^{p^d} - k$$

has kernel \mathbb{F}_{p^d} and so image $T_d \subset \mathbb{F}_q$ of index p^d .

Choose a uniformizer π and a lift $\kappa \subset \mathcal{O}$ of \mathbb{F}_{p^f} . Require $0 \in \kappa$ and write $\kappa^{\times} = \kappa - \{0\}$. For each divisor d of f, choose a lift $\kappa_d \subset \kappa$ of \mathbb{F}_q/T_d , so that $|\kappa_d| = p^d$ and $\kappa_f = \kappa$. For $F = \mathbb{Q}_p$, we always just take $\pi = p$ and $\kappa = \{0, 1, \dots, p-1\}$.

For a ramification invariant I, let

- α be its number of •'s;
- β be its number of •'s;.
- γ = ∑_j gcd(ρ(j), f) where j runs over indices of o's and ρ(j) it
 the number of times the corresponding slope is repeated.

Krasner-Monge theorem

Theorem

Let F be a p-adic field with absolute ramification index $e \in \mathbb{Z}_{\geq 1}$ and chosen π and κ_d as on the previous slide. Let $I \in \mathcal{I}_{p,e,w}$ be a possible ramification invariant for degree p^w extensions of F. Consider the polynomials in the corresponding Krasner-Monge family

$$\pi + \sum_{(u,v) \text{ as } \bullet} a_j \pi^v x^u + \sum_{(u,v) \text{ as } \bullet} b_j \pi^v x^u + \sum_{(u,v) \text{ as } \circ} c_j \pi^v x^u + x^{p^w}$$

with $a_j \in \kappa^{\times}$, $b_j \in \kappa$, and $c_j \in \kappa_{\text{gcd}(\rho(j),f)}$. Then the corresponding extensions are in F(I), with each K represented $\frac{p^{\gamma}}{|\text{Aut}(K/F)|}$ times.

Corollary

The total number of extensions in F(I) is $\geq (q-1)^{\alpha}q^{\beta}$, with equality if $\gamma = 0$.

6.1 The case $I = [\hat{s}_1, \hat{s}_2] = [2, \frac{17}{6}]$ over \mathbb{Q}_3

The database says there are 36 fields falling in four packets of nine. As said before, the family is

 $\begin{aligned} f(a_6, a_{13}, b_{14}, b_{16}, c_9, x) = \\ (3 + 9c_9) + 9a_{13}x^4 + 9b_{14}x^5 + 3a_6x^6 + 9b_{16}x^7 + x^9, \end{aligned}$

Since there is just one c and f = 1, the ambiguity parameter is $\gamma = 1$ and each field K has $p^{\gamma} = 3$ near-canonical defining polynomials. The ambiguity is easily resolved by setting a parameter to 0 and the packets are cleanly described:

 $f(1, 2, 0, b_{16}, c_9, x)$ $f(1, 1, b_{14}, b_{16}, 0, x)$ $f(2, 2, 0, b_{16}, c_9, x)$ $f(2, 1, b_{14}, b_{16}, 0, x)$ gives 9713 and hidden slopes $[5/2]_2$ gives 9718 and hidden slopes $[5/2]_2^2$ gives 9722 and hidden slopes $[3/2, 5/2]_2$ gives 9724 and hidden slopes $[3/2, 5/2]_2$

6.2 The case $I = [\hat{s}_1, \hat{s}_2] = [\frac{5}{2}, \frac{17}{6}]$ over \mathbb{Q}_3

The database says that in this case there are 18 fields falling into two packets of nine. The Krasner-Monge family is

$$g(\alpha_{14},\beta_{12},\beta_{16},x) = 3 + 9\beta_{12} + 9\alpha_{14}x^5 + 9\beta_{16}x^7 + x^9$$

Defining polynomials are in this case unique and

$$\begin{array}{l} g(2,\beta_{12},\beta_{16},x) & \text{gives } 9T11 \text{ and hidden slopes } [2]_2\\ g(1,\beta_{12},\beta_{16},x) & \text{gives } 9T18 \text{ and hidden slopes } [2]_2^2 \end{array}$$

In general, resolvent constructions should have nice descriptions via the universal families. For example, 9T13 from the previous slide and 9T11 are the same abstract group. The bijection between

- the nine 9713 fields defined by $f(1, 2, 0, b_{16}, c_9, x)$ and
- the nine 9711 fields defined by $g(2, \beta_{12}, \beta_{16}, x)$

is given by $c_9 = \beta_{12}$ and $b_{16} = \beta_{16} + 1 - \beta_{12}^2$.

6.3 The case $I = [\hat{s}_1, \hat{s}_2] = [3/2, \frac{8}{3}]$ over \mathbb{Q}_3

The database gives five types of fields. The family is

 $f(a_3, a_{11}, b_{13}, b_{14}, c_{15}) =$ $3 + 9x^2 a_{11} + 3x^3 a_3 + 9x^4 b_{13} + 9x^5 b_{14} + 9x^6 c_{15} + x^9$

The five types are

Here \star can be any element of $\{0, 1, 2\}$ without changing the field. Otherwise, different parameters give different fields.

Commented main references

Much of this material has origin in:

M. Krasner, Sur la primitivité des corps p-adiques, Mathematica (Cluj) 13 (1937) 72-191.

Krasner's results were modernized in:

P. Deligne, *Les corps locaux de caractéristique p, limites de corps locaux de caractéristique 0*, in Representations of Reductive Groups over a Local Field (1984), pp. 119–157.

The original database from which the LMFDB database grew: J. W. Jones and D. P. Roberts, *A database of local fields*, J. Symbolic Comput. 41(1) (2006) 80–97.

A modernization which, like Krasner, emphasizes polynomials: M. Monge, *A family of Eisenstein polynomials generating totally ramified extensions, identification of extensions and construction of class fields.* Int. J. Number Theory 10 (2014), no. 7, 1699–1727.