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Two-paragraph summary

The p-adic field section of the LMFDB tabulates degree n extensions
of Qp, including for all n ≤ 15 and p ≤ 199. For example, always up
to isomorphism, there are 795 nonic extensions K/Q3 and 1823 octic
extensions K/Q2. Interesting invariants include visible slopes, hidden
slopes, and Galois groups.

The main framework for improvement is to focus first on visible
slopes. Here there is a strong general theory valid for general K/F ,
not just the case F = Qp. It centers on Krasner-Monge
near-canonical polynomials for totally ramified extensions K/F .
These polynomials let one collect all extensions of a given F with
given visible slopes into a single parameterized family, and the
dependence on F is mild. The family structure then facilitates the
investigation of hidden slopes and Galois groups.



Overview

1. Introduction, including a tour of the database.

2. The ramification invariant I of an extension K/F , as captured
in the totally wild degree pw case by

heights 〈h1, . . . , hw〉,
slopes [s1, . . . , sw ],
or rams (r1, . . . , rw ).

3. The set I of possible ramification invariants.

4. From ramification invariants to pictures.

5. From pictures to near-canonical polynomials.

6. Hidden slopes and Galois groups in two sample families.



1.1. Notation for classifyng extensions
Let n ∈ Z≥1 and let F be a field. An important problem is to
describe the set F (n) of isomorphism classes of separable field
extensions K/F of degree n.

Let G run over conjugacy classes of transitive subgroups of Sn. Then
Galois theory gives a natural decomposition

F (n) =
∐

G F (G ).

One would like to describe each F (G ) individually.

Now let F be a p-adic field, i.e. a finite extension of Qp or Fp((t)),
with uniformizer π ∈ Π ⊂ O ⊂ F as usual. Then every K/F has a
discriminant ideal Πc , giving

F (n) =
∐

G

∐
c F (G , c).

The sets F (G , c) are finite and one would like to describe them
individually.



1.2. Overview of the 795 nonic 3-adic fields
There are 81 nonzero |Q3(G , c)| with 22 Galois groups G and 16 discriminant exponents c
involved. On the table, groups G are sorted first by the number of cubic subfields: ≥ 2, 1, and
then 0. In the third column, A = Aut(K/Q3) is the centralizer of the Galois group G .

|G | G |A| 0 9 10 12 13 15 16 18 19 20 21 22 23 24 25 26
9 9T2 9 1

18 9T4 3 2 1 6, 3 3 9
18 9T5 1
36 9T8 1 2 3 3
9 9T1 9 1 2 9

18 9T3 1 1 3
27 9T6 3 2 6
27 9T7 3 1 3
54 9T10 6 11 8 24
54 9T11 2 1 8 9
54 9T12 3 9 27
54 9T13 2 1 2 3 3 9
81 9T17 3 9 9 18

108 9T18 2 4 3 12 18 9
162 9T20 3 6 12 9 45 27 81
162 9T21 27 27 54
162 9T22 6 3 6 9 9 27
324 9T24 6 12 9 27 9 27 27 27
36 9T9 1 1
72 9T14 1 3
72 9T16 1 3

144 9T19 2 2 2 6 2 6

Bold=Unramified Italic=partially ramified Regular=totally ramified



1.3. Tour of the p-adic section of the LMFDB
As said earlier, the LMFDB currently contains the sets Qp(n) for all
p ≤ 199 and all n ≤ 15, with information on each field K . E.g., the
field K labeled 3.9.21.20 is defined by x9 + 12x6 + 18x4 + 3.

The degree n of any field factors as utpw with u and t its unramified
and tamely ramified parts. There are w wild slopes ŝ1 ≤ · · · ≤ ŝw , as
introduced in the next section. The “slope content” of our example
(not directly given in the LMFDB) is [ŝ1, ŝ2]ut = [2, 176 ]11 = [2, 176 ].

The LMFDB does however always gives the much-harder-to-calculate
slope content of the Galois closure L. In our example G = 9T24 has
324 = 2234 elements and the slope content of L is[

3
2
, 2,

5
2
,
17
6

]2
2
.

At this level, the wild slopes are breaks in the Artin upper numbering
of the ramification filtration on G . They consist of the wild slopes
already visible in K , and also some more hidden slopes.



2.1. The canonical filtration of a p-adic extension
Any K/F ∈ F (n) has a canonical filtration obtained by climbing from
F to K via suitable minimally ramified subextensions. To focus on
the main phenomena, we henceforth restrict to u = t = 1 so n = pw .
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As we’ll see, for any 2-adic field F , the picture arises from many octic
extensions K/F , e.g. from 32 in the case F = Q2. The filtration
takes the form

F = K0 ⊂ K1 ⊂ K2 ⊂ K3 = K

with each [Ki : Ki−1] = 2.
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The numerical invariants are captured in three equivalent ways:
heights 〈h1, h2, h3〉 = 〈1, 5, 15〉,
slopes [s1, s2, s3] = [1, 2, 52 ] ,
or rams (r1, r2, r3) = (1, 3, 5).

We switch to focusing on wild ramification only, writing

cond(Ki/Kj) = c(Ki/Kj)− deg(Ki/Kj) + 1.

The definitions are then hi = cond(Ki/K0) and ri = cond(Ki/Ki−1).
Accordingly, we also switch from the website’s Artin-Fontaine slopes
ŝi to the Serre-Swan slopes si via ŝi = si + 1.



When the canonical filtration has fewer than w steps we keep a
uniform notation that refers to nonexistent fields:
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Here the filtration is F = K0 ⊂ K1⊂ K2 ⊂ K3 = K . The invariants
are

I = 〈1, 17
3
, 15〉 =

[
1,

7
3
,
7
3

]
=

(
1,

11
3
,
11
3

)
.

When Ki is nonexistent, hi is no longer forced to be integral.
Similarly too, a ram rj repeated ρ times is now only forced to have a
denominator dividing Pρ(p) := pρ−1 + pρ−2 + · · ·+ p + 1.



2.2. Conversion formulas

The three ways of describing a ramification invariant I interrelate via

hk
2a
=

k∑
j=1

φ(pj)sj , hk
2b
=

k∑
j=1

pk−j rj ,

sk
1a
=

hk − hk−1
φ(pk)

, sk
3
=

rk
φ(pk)

+
k−1∑
j=1

rj
pj
,

rk
1b
= hk − phk−1, rk

4
= φ(pk)sk − φ(p)

k−1∑
j=1

φ(pj)sj .

1a captures the definition of slope as rise/run. 1b emphasizes that
rams measure how Kk is more ramified than say the algebra K p

k−1. 2a
and 2b are their inversions, each intuitive in their own right.
3 = 1a ◦ 2b and 4 = 1b ◦ 2a are less directly intuitive.



3.1. Allowed r1 = · · · = rρ in one-step extensions

The set of r1 arising in one-step degree pρ extensions of F is very
simple and depends only on the ramification index e = ordΠ(p)!

In the case of e =∞, i.e. function fields, it is

Rp,∞,ρ =
Z≥1 − pZ≥1

Pρ(p)
=

Z≥1 − pZ≥1
pρ−1 + pρ−2 + · · · p + 1

.

In the case e <∞, i.e. extensions of Qp, it is

Rp,e,ρ = (Rp,∞,ρ ∩ (0, pe)) ∪
{
{pe} if ρ = 1,
{ } if ρ > 1.

The conversion formulas are trivial in the one-step extension context,
s1 = r1

p−1 and hρ = Pρ(p)r1.



3.2. Example: One-step extensions for p = 2
From the previous slide for multiplicities ρ = 1 and ρ = 2,

R2,∞,1 = { 1, | 3, . . . },
R2,∞,2 = { 1

3 , 1, 5
3 , |

7
3 , 3, . . . }.

The cutoff for e = 1 is indicated and so the corresponding sets are

R2,1,1 = { 1, 2 },
R2,1,2 = { 1

3 , 1, 5
3 }.

Over Q2, the quadratic fields for the rams 1 and 2 are respectively
Q2(
√
d) for d ∈ {−1,−1∗} and d ∈ {2, 2∗,−2,−2∗}, with say

∗ = 5. The quartic fields appear on the LMFDB as

(r1, r2) = (1/3, 1/3) (r1, r2) = (1, 1) (r1, r2) = (5/3, 5/3)
x4 + 2x + 2 [4/3, 4/3]23 S4 x4 + 2x3 + 2x2 + 2 [2, 2]3 A4 x4 + 4x2 + 4x + 2 [8/3, 8/3]23 S4

x4 + 2x3 + 2 [2, 2]2 D4 x4 + 4x2 + 2 [8/3, 8/3]23 S4
x4 + 2x3 + 6 [2, 2]2 D4



3.3. Occurring invariants I in general extensions
Fix a ground field F with ordΠ(p) = e and consider its totally
ramified extensions of degree pw .

Break up this set of extensions according to their multiplicity vector
m = (m1, . . . ,mk). Let Mi =

∑i
j=1mj . Let Ip,e,m be the set of

occurring invariants I . Then necessarily Ip,e,m is in

Îp,e,m = {(
m1︷ ︸︸ ︷

r(1), . . . , r(1), . . . ,

mk︷ ︸︸ ︷
r(k), . . . , r(k)) : r(i) ∈ Rp,epMi−1 ,mi

}.

The index gymnastics hide a simple Cartesian product! E.g. Îp,e,(3,2)

consists of 5-tuples (r1, r1, r1, r4, r4) with (r1, r4) ∈ Rp,e,3 ×Rp,p3e,2.

The set Ip,e,m is then the subset of Îp,e,m such that the list of rams
r(1), . . . , r(k), or equivalently the list of slopes s(1), . . . , s(k), is
strictly increasing. The elementary nature of Ip,e,w =

∐
m Ip,e,m is

illustrated by the next slide by I3,1,2 = I3,1,(1,1)

∐
I3,1,(2).



3.4. Invariants for tot. ram. nonic 3-adic fields
rams (r1, r2) and slopes [ŝ1, ŝ2] with m = (1, 1) before m = (2):

(1, 1) (2, 1) (3, 1) (0.25, 0.25)
(1, 2) (2, 2) (3, 2) (0.50, 0.50)

(1, 4) (2, 4) (3, 4) (1.00, 1.00)
(1, 5) (2, 5) (3, 5) (1.25, 1.25)

(1, 7) (2, 7) (3, 7) (1.75, 1.75)
(1, 8) (2, 8) (3, 8) (2.00, 2.00)
(1, 9) (2, 9) (3, 9)

(2.50, 2.50)
(2.75, 2.75)

[1.5, 1.50] [2, 1.83] [2.5, 2.16] [1.125, 1.125]
[1.5, 1.66] [2, 2.00] [2.5, 2.33] [1.250, 1.250]

[1.5, 2.00] [2, 2.33] [2.5, 2.66] [1.500, 1.500]
[1.5, 1.16] [2, 2.50] [2.5, 2.83] [1.625, 1.625]

[1.5, 2.50] [2, 2.83] [2.5, 3.16] [1.875, 1.875]
[1.5, 2.66] [2, 3.00] [2.5, 3.33] [2.000, 2.000]
[1.5, 2.83] [2, 3.16] [2.5, 3.50]

[2.250, 2.250]
[2.375, 2.375]

The Cartesian structure of Î3,1,(1,1) is visible
in rams as {1, 2, 3} × {1, 2, 4, 5, 7, 8, 9}, but
obscured in slopes.

The Cartesian structure on the (1, 1) part is still
visible in the total masses to the right, where K/F
has mass |1/Aut(K/F )|.

2
4 2

12 12 18 6
12 12 18 2

36 36 54 6
36 36 54 6
54 54 81

6
6



4.1. From an invariant I to its picture
An invariant I = h = s = r for degree pw extensions determines a
picture in the window [0, pw ]× [0, ŝw ]. For example

I = 〈11, 62, 252〉 = [5.5, 8.5, 10.5] = (11, 29, 66)

determines

9 18 27
0

5

10

(The points in the u-column will give constraints on the coefficient tu
of the xu terms in Eisenstein polynomials.)
Q. Can you guess the recipe for passing from I to the picture?



4.2. The recipe for drawing the I -picture, part 1

s1

s2

s3

9 18 27
0

5

10

There are w closed bands. The top edge of the i th band Bi goes from
(0, ŝi) to (pw , sj). All drawn points (u, v) are integral and, besides
(0, 1) and (pw , 0), occur only in the bands. Write u′ = u/pw . Then
an integral point (u, v) ∈ Bi is drawn iff its u′ has exact denominator
pi or it’s on the boundary. It is drawn solidly iff the first condition
holds. There is always a unique point on the lower edge, drawn as ◦
or •. There is at most one point on the upper edge, drawn as ◦.



4.3. The recipe for drawing the I -picture, part 2
Define the scaled heights and scaled rams via h′i = hi/p

i and
r ′i = ri/p, and indicate these variants by double delimiters. So the
current example becomes

I = 〈〈32
3 , 6

8
9 , 9

1
3〉〉 = [5.5, 8.5, 10.5] = ((32

3 , 9
2
3 , 22)).

h1'

h2'

h3'

s1

s2

s3

9 18 27
0

5

10

The i th ◦ or • is at (u′i , vi) = (〈h′i〉, dh′ie) so that e.g. the first •
comes from 32

3 and is at (u′1, v1) = (23 , 4). Equivalently, the lower
edge of Bi goes through (pw , h′i). Also, Bi contains exactly br ′i c •’s,
and then also a • iff r ′i is nonintegral.



5.1. The Krasner-Monge parametrized polynomial
Index a point (u, v) by the integer j = pw (v − 1) + u, so that the i th

• or ◦ becomes j = pwh′i . Introduce variables aj , bj and cj for drawn
points in bands of the form •, •, and ◦. Form the polynomial

π +
∑

(u,v) as •

ajπ
vxu +

∑
(u,v) as •

bjπ
vxu +

∑
(u,v) as ◦

cjπ
vxu + xp

w

Our earlier example I = [1, 116 ] = ((23 , 2
1
3)) = 〈〈23 , 1

4
9〉〉 yields

3 6 9

1

2

3

For π = 3, it’s (3 + 9c9) + 9a13x4 + 9b14x5 + 3a6x6 + 9b16x7 + x9.



Notation for the Krasner-Monge theorem
Let F be a p-adic field with residue field Fq with q = pf .

For d a divisor of f , the additive map

Fq → Fq : k 7→ kpd − k

has kernel Fpd and so image Td ⊂ Fq of index pd .

Choose a uniformizer π and a lift κ ⊂ O of Fpf . Require 0 ∈ κ and
write κ× = κ− {0}. For each divisor d of f , choose a lift κd ⊂ κ of
Fq/Td , so that |κd | = pd and κf = κ. For F = Qp, we always just
take π = p and κ = {0, 1, . . . , p − 1}.

For a ramification invariant I , let
α be its number of •’s;
β be its number of •’s;.
γ =

∑
j gcd(ρ(j), f ) where j runs over indices of ◦’s and ρ(j) it

the number of times the corresponding slope is repeated.



Krasner-Monge theorem

Theorem
Let F be a p-adic field with absolute ramification index e ∈ Z≥1 and
chosen π and κd as on the previous slide. Let I ∈ Ip,e,w be a possible
ramification invariant for degree pw extensions of F . Consider the
polynomials in the corresponding Krasner-Monge family

π +
∑

(u,v) as •

ajπ
vxu +

∑
(u,v) as •

bjπ
vxu +

∑
(u,v) as ◦

cjπ
vxu + xp

w

with aj ∈ κ×, bj ∈ κ, and cj ∈ κgcd(ρ(j),f ). Then the corresponding
extensions are in F (I ), with each K represented pγ

|Aut(K/F )| times.

Corollary
The total number of extensions in F (I ) is ≥ (q − 1)αqβ, with
equality if γ = 0.



6.1 The case I = [ŝ1, ŝ2] = [2, 176 ] over Q3

The database says there are 36 fields falling in four packets of nine.
As said before, the family is

f (a6, a13, b14, b16, c9, x) =

(3 + 9c9) + 9a13x4 + 9b14x5 + 3a6x6 + 9b16x7 + x9,

Since there is just one c and f = 1, the ambiguity parameter is γ = 1
and each field K has pγ = 3 near-canonical defining polynomials.
The ambiguity is easily resolved by setting a parameter to 0 and the
packets are cleanly described:

f (1, 2, 0, b16, c9, x) gives 9T13 and hidden slopes [5/2]2
f (1, 1, b14, b16, 0, x) gives 9T18 and hidden slopes [5/2]22
f (2, 2, 0, b16, c9, x) gives 9T22 and hidden slopes [3/2, 5/2]2
f (2, 1, b14, b16, 0, x) gives 9T24 and hidden slopes [3/2, 5/2]22



6.2 The case I = [ŝ1, ŝ2] = [52,
17
6 ] over Q3

The database says that in this case there are 18 fields falling into two
packets of nine. The Krasner-Monge family is

g(α14, β12, β16, x) = 3 + 9β12 + 9α14x
5 + 9β16x7 + x9

Defining polynomials are in this case unique and

g(2, β12, β16, x) gives 9T11 and hidden slopes [2]2
g(1, β12, β16, x) gives 9T18 and hidden slopes [2]22

In general, resolvent constructions should have nice descriptions via
the universal families. For example, 9T13 from the previous slide and
9T11 are the same abstract group. The bijection between

the nine 9T13 fields defined by f (1, 2, 0, b16, c9, x) and
the nine 9T11 fields defined by g(2, β12, β16, x)

is given by c9 = β12 and b16 = β16 + 1− β122.



6.3 The case I = [ŝ1, ŝ2] = [3/2, 83] over Q3

The database gives five types of fields. The family is

f (a3, a11, b13, b14, c15) =

3 + 9x2a11 + 3x3a3 + 9x4b13 + 9x5b14 + 9x6c15 + x9

The five types are

# µ
9 3 f (1, 2, b13, b13 + 2, c15, x) gives 9T12 and h.s. [5/2]2
18 6 f (1, 2, b13, b13 + 0

1 , c15, x) gives 9T20 and h.s [5/2]32
9 9 f (2, 2, b13, b14, ?, x) gives 9T18 and h.s. [3/2]22
27 9 f (2, 1, b13, b14, c15, x) gives 9T20 and h.s [3/2, 5/2]2
9 9 f (1, 1, b13, b14, ?, x) gives 9T24 and h.d. [3/2, 2]22

Here ? can be any element of {0, 1, 2} without changing the field.
Otherwise, different parameters give different fields.
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