Quadratic relations between Feynman integrals

David P. Roberts
University of Minnesota Morris
www.davidproberts.net
(reporting on joint work with David Broadhurst, The Open University, UK)

January 16, 2019

Background: Periods in the context of curves

On a genus g curve X over \mathbb{Q}, one has $2 g$ independent one-cycles Δ_{u} and $2 g$ independent one-forms ω_{a} and three $2 g$-by- $2 g$ matrices:

$$
F=\left(\int_{\gamma_{u}} \omega_{a}\right), \quad B=\left(\Delta_{u} \cdot \Delta_{v}\right), \quad D=\left(\int_{X} \omega_{a} \wedge \bar{\omega}_{b}\right) .
$$

The periods satisfy the quadratic relations $F D F^{t}=B$ with D and B

Some interesting integrals

Classical Bessel functions I_{0} and K_{0} on the interval $(0, \infty)$ are given by various equivalent formulas and have simple graphs:

The integrals

$$
\operatorname{Int}(a, b, c)=\int_{0}^{\infty} I_{0}(x)^{a} K_{0}(x)^{b} x^{c} d x
$$

are important because they arise in quantum field theory from Feynman diagrams.

A representative integral evaluated numerically

For example,

$$
\operatorname{Int}(4,5,6)=\int_{0}^{\infty} I_{0}(x)^{4} K_{0}(x)^{5} x^{6} d x
$$

gives the area of

and evaluates to
$0.0469368415316903315940262851804465389341418080955 \ldots$

Very brief timeline

Pre-2017. Broadhurst $[\mathrm{Bro}]$ and others studied the $\operatorname{lnt}(a, b, c)$ because of their role in quantum field theory. A focus was on numerically identifying some of the $\operatorname{Int}(a, b, c)$ with special values of L-functions coming from modular forms. There were various strong hints of a general theory, e.g. a paper of Zhi-wei Yun. [Yun]
2017. Broadhurst and I conjectured two general formulas involving all $\operatorname{lnt}(a, b, c)$, and supported these conjectures by high precision numeric computations. [BR1, just four pages!] concerns a general L-function formula and [BR2, just one relevant page!] concerns quadratic relations among the $\operatorname{Int}(a, b, c)$. This talk is about [BR2].
2018. Javier Fresán, Claude Sabbah, and Jeng-Daw Yu theoretically established our L-function conjecture [FSY] and are establishing our quadratic relations conjecture in a sequel.

Feynman matrices

The integrals

$$
\operatorname{lnt}(a, b, c)=\int_{0}^{\infty} I_{0}(x)^{a} K_{0}(x)^{b} x^{c} d x
$$

are naturally grouped according to $N:=a+b$, and in this talk we'll take N odd. Put $k=(N-1) / 2$ and define a k-by- k matrix F_{N} with entries

$$
F_{N}(u, a)=\frac{(-1)^{a-1}}{\pi^{u}} \operatorname{lnt}(k+1-u, k+u, 2 a-1)
$$

For example,

$$
F_{7} \approx\left(\begin{array}{lll}
0.3566864959 & -0.04118556521 & 0.06789824820 \\
0.2568847021 & -0.00858666702 & 0.00295037871 \\
0.2361144815 & -0.00316606434 & 0.00048152310
\end{array}\right)
$$

Feynman matrices as period matrices

For various reasons, we expected that F_{N} is a period matrix on a algebraic variety X over \mathbb{Q} of dimension $d=N-3$. This means that the entries would have an alternate expression

$$
F_{N}(u, a)=\iint \ldots \iint_{\Delta_{u}} \omega_{a}
$$

Here $\Delta_{1}, \ldots, \Delta_{k}$ are topological d-cycles in the $2 d$-dimensional real manifold X, and $\omega_{1}, \ldots, \omega_{k}$ are algebraically defined d-forms on this manifold. Define k-by- k matrices B_{N} and D_{N} by

$$
B_{N}(u, v)=\Delta_{u} \cdot \Delta_{v}, \quad \quad D_{N}(a, b)=\int_{X} \omega_{a} \wedge \bar{\omega}_{b}
$$

From the definitions, one would have $F_{N} D_{N} F_{N}^{t}=B_{N}$. The Betti matrix B_{N} and the de Rham matrix D_{N} would have rational entries. They would be symmetric in our current case of N odd, and antisymmetric in the other case of N even.

Numerically solving $F_{N} D_{N} F_{N}^{t}=B_{N}$

In general, Betti matrices and de Rham matrices have special structures which we expected made some entries 0 in our hoped-for matrices B_{N} and D_{N}.

For N small, we found always a unique appropriately normalized numeric solution, e.g.
$B_{7}=\frac{1}{2^{67}}\left(\begin{array}{ccc}84 & 0 & 42 \\ 0 & -35 & 0 \\ 42 & 0 & 30\end{array}\right), \quad D_{7}=\frac{1}{2^{8}}\left(\begin{array}{ccc}816 & 20712 & 11025 \\ 20712 & 11025 & 0 \\ 11025 & 0 & 0\end{array}\right)$
The block structure on the B_{N} comes from the fact that alternate Δ_{u} are either fixed or negated by complex conjugation. The triangular structure on the D_{N} comes from the fact that the ω_{a} sit in the smallest possible flags in the Hodge filtration, and all subquotients of this filtration have size zero or one.

Extrapolating to general formulas for B_{N} and D_{N}

1. It was easy to see a pattern in the B_{N}. For odd $N=2 k+1$, our conjectural formula is

$$
B_{N}(u, v)=(-1)^{u+k} 2^{-2 k-2}(k+u)!(k+v)!\frac{\mid \text { Bernoulli }}{u+v} \text { | } .
$$

2. The pattern was much harder to see in the D_{N}, but eventually we found the inductive formula presented in [BR2].
3. With all three matrices now with independent definitions, we confirmed for much larger N that $F_{N} D_{N} F_{N}^{t}=B_{N}$ holds to high precision.

References

[Bro] David Broadhurst. Feynman integrals, L-series and Kloosterman moments. Communications in Number Theory and Physics 10 (2016) 527-569.
[BR1] David Broadhurst and David P. Roberts. L-Series and Feynman integrals. Matrix Annals 2018. 4 pages.
[BR2] David Broadhurst and David P. Roberts. Quadratic relations between Feynman integrals. Loops and Legs in Quantum Field Theory 2018. Proceedings of Science. 8 pages.
[FSY] Javier Fresán, Claude Sabbah, Jeng-Da Yu. Hodge theory of Kloosterman Connections. arXiv:1810.06454, 69 pages.
[Yun] Zhiwei Yun. Galois representations attached to moments of Kloosterman sums and conjectures of Evans. Composita Mathematica 151 (2015), no. 1, 68-120.

